Forschungsbericht; 25 (Koln, 2008). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаEarly warning of earthquakes by space-borne infrared sensors / Halle W., Oertel D., Scholotzhauer G., Zhukov B. - Köln: DLR, 2008. - 104 p. - (Forschungsbericht; 2008-25) - ISSN 1434-8454
 

Оглавление / Contents
 
Content of Figures .............................................. 5
Content of Tables ............................................... 8
List of Shortcuts and Abbreviations ............................. 9

1. Forecasting of earthquakes - An introduction ................ 11
2. Present status in prediction of earthquakes by remote
   sensing ..................................................... 12
   2.1. Geo-seismic echo on solar activity ..................... 13
   2.2. Ionospheric processes .................................. 14
3. Analysis of exemplarily earthquake precursor events using
   space-borne infrared and visible remote sensing data sets ... 16
   3.1. Characteristics, possible nature and detection
        problems of thermal anomalies related to earthquake
        preparation process .................................... 16
   3.2. Review of the algorithms used to extract pre-seismic
        thermal anomalies ...................................... 18
   3.3. Testing the multi-temporal approach for monitoring
        thermal anomalies ...................................... 19
        3.3.1. Anomalies in sea surface temperature ............ 19
               3.3.1.1. The case of the Kocaeli (Izmit)
                        earthquake of August, 17, 1999 ......... 19
               3.3.1.2. The case of the Greek earthquake
                        of August, 14, 2003 .................... 25
        3.3.2. Anomalies in night-time land surface
               temperature ..................................... 26
        3.3.3. Anomalies in daytime land surface temperature ... 35
   3.4. Wavelet approaches ..................................... 36
        3.4.1. The "CQuake" wavelet algorithm .................. 36
        3.4.2. The two-dimensional multi-resolution wavelet
               analysis ........................................ 37
               3.4.2.1. Sea surface temperature anomalies
                        at Kocaeli (Izmit) in August 1999 ...... 37
               3.4.2.2. Sea surface temperature anomalies
                        at Ionian Sea in August 2003 ........... 39
   3.5. Characteristics of visible phenomena ................... 40
   3.6. Conclusions on used methods and approaches ............. 41
        3.6.1. Monitoring thermal anomalies by RETIRA multi-
               temporal approaches ............................. 41
        3.6.2. Monitoring thermal anomalies by two-
               dimensional multi-resolution wavelet analysis ... 43

4. Requirements to dedicated micro-satellite based IR sensor
   systems for earthquake precursor detection .................. 44
   4.1. Spectro-radiometric requirements on IR sensors for
        space-borne detection of thermal precursors of
        earthquakes ............................................ 44
   4.2. Spectro-radiometric requirements to space-borne
        sensors for detection of linear cloud structures 
        occurring before earthquakes ........................... 45
   4.3. Prospective of an Imaging Thermal Infra-Red (TIR)
        spectrometry for detection of thermal anomalies in
        arid and semi-arid terrain ............................. 45
   4.4. Overall mission requirement aspects .................... 46
5. Conclusions and recommendations ............................. 48

Annexes ........................................................ 50

Annex A. Evaluation of the error sources in the multi-
         temporal approach for monitoring thermal anomalies
         in seismically active areas ........................... 51
    A.1. Atmospheric effects ................................... 51
    A.2. Surface emissivity .................................... 54
    A.3. Temporal and spatial surface temperature
         variability ........................................... 57
    A.4. Geo-referencing errors ................................ 63

Annex B. Development of approaches to minimize the effect
         of error sources in the multi-temporal approach
         for monitoring thermal anomalies in seismically
         active areas .......................................... 65
    B.1. Atmospheric correction ................................ 65
    B.2. Accounting for surface emissivity ..................... 70
    B.3. Reducing the effect of surface temporal variability ... 73
    B.4. Recommendations on method utilization and sensor
         observation features .................................. 73

Annex С. Development of methods for reliable identification
         of typical cloud structures from space as potential
         earthquake precursors ................................. 75
    C.1. Review of cloud detection algorithms .................. 75
    C.2. Simulation of multi-spectral radiometric
         characteristics of clouds ............................. 77
    C.3. Cloud detection algorithm ............................. 80
    C.4. Aspects of linear cloud structure recognition ......... 83
    C.5. Sensor requirements for cloud detection ............... 83

Annex D. Development of proposals for dedicated IR sensor
         systems for earthquake precursor detection by
         micro-satellites ...................................... 85
    D.1. Scope ................................................. 85
    D.2. Currently used IR sensors for earthquake precursor
         detection ............................................. 85
    D.3. Upcoming European IR sensors with the potential
         for earthquake precursor detection .................... 86
    D.4. Prospective German micro-satellite missions with
         IR sensors ............................................ 87
    D.5. Concept proposals for a dedicated IR sensor system
         for earthquake precursor detection by micro-
         satellites ............................................ 88
         D.5.1. Concept A: Sensor supplement to
                a prospective fire monitoring constellation -
                a narrow cost proposal ......................... 88
         D.5.2. Concept B: thermal IR imaging spectrometer ..... 92

References ..................................................... 98

Content of Figures

Fig. 2.1: Seismo-atmospheric-ionospheric couplings according
          to Pulinets  (Pulinets, 2004) ........................ 15
Fig. 3.1: Sea surface temperature distribution over the
          Aegean Sea. The selected anomaly area is confined
          with blue ............................................ 20
Fig. 3.2: SST RETIRA index distribution over the Aegean Sea.
          The selected anomaly area is confined with blue ...... 21
Fig. 3.3: The total area of SST RETIRA anomalies with
          RETIRA > 2.5 in the Aegean Sea as a function of
          time: a - for the entire available observation
          period; b - in August, 1999 (the month of the
          earthquake). The dotted line indicates August,
          17, 1999 (the earthquake date). The arrow
          corresponds to the RETIRA anomalies on August,
          13, 1999 ............................................. 22
Fig. 3.4: The total area of SST RETIRA anomalies with
          RETIRA > 2.5 in the Aegean Sea in the month of
          August during 8 years of observations. The dotted
          line indicates the earthquake date (August, 17,
          1999). The arrow corresponds to the RETIRA
          anomalies on August, 13, 1999 ........................ 23
Fig. 3.5: Time series of SST (a, b) and of RETIRA (c, d) in
          the area selected in Fig. 3.2 and Fig.3.3. The
          dotted line indicates the earthquake date (August,
          17, 1999). The arrow corresponds to the date of
          the RETIRA anomaly of August, 13, 1999 ............... 24
Fig. 3.6: Map of the region of the earthquake. The
          epicenters of the earthquakes on August, 14, 2003
          and March, 1, 2004 are marked with a star.
          The plate boundary, major fault lines and the
          type of faulting are also indicated (Cervone etal,
          2004) ................................................ 25
Fig. 3.7: Sea surface temperature (a) and RETIRA index (b)
          distribution in the Ionian Sea on August, 6, 2003.
          Two selected areas are confined with blue ............ 27
Fig. 3.8: Sea surface temperature (a) and RETIRA index (b)
          distribution in the Ionian Sea on August, 13, 2003 ... 28
Fig. 3.9: Time series of SST (a, b) and of RETIRA (c, d)
          values in area 1 in Fig.3.6. The dotted line
          indicates the earthquake date (August, 14, 2003).
          The arrow corresponds to the date of the RETIRA
          anomaly of August, 6, 2003 ........................... 29
Fig.3.10: Time series of SST (a, b) and of RETIRA (c, d) in
          area 2 in Fig.3.6. The dotted line indicates
          the earthquake date (August, 14, 2003). The arrow
          corresponds to the date of the RETIRA anomaly of
          August, 6, 2003 ...................................... 30
Fig.3.11: Correlation of SST RETIRA peaks in areas 1 and 2
          in Fig.3.6: a - RETIRA time series in area 1;
          b - RETIRA time series in area 2; с - summary value
          of the RETIRA peaks with magnitude > 2 in both
          areas; d - summary value of the RETIRA peaks with
          magnitude > 3 in both areas .......................... 31
Fig.3.12: Night-time LST-based RETIRA index distribution
          over Greece on August, 12-15, 2003 ................... 32
Fig.3.13: The total area of night-time LST RETIRA anomalies
          with RETIRA > 2 over Greece as a function of
          time: a - for the entire available observation
          period; b - for the month of the earthquake
          (August 2003). The dotted line indicates the
          earthquake date. The arrow corresponds to the
          RETIRA anomalies on August, 13, 2003 ................. 33
Fig.3.14: The total area of night-time LST-based RETIRA
          anomalies with RETIRA > 2 over Greece in the month
          of August during 8 years of observations. The
          dotted line indicates the earthquake date
          (14 August 2003). The arrow corresponds to the
          RETIRA anomalies on 13 August 1999 ................... 34
Fig.3.15: The total area of daytime LST-based RETIRA 
          anomalies with RETIRA > 2 over Greece as a function
          of time: a - for the entire available observation
          period; b - for the year of the earthquake (2003);
          с - for the month of the earthquake (August 2003).
          The dotted line indicates the earthquake date
          (14 August 2003) ..................................... 35
Fig.3.16: Multi-resolution analysis by Daubechies wavelet
          2 of SST of Aegean Sea at August 13, 1999. The
          arrow indicates a possible thermal anomaly.
          Calculations are performed with (ITT, 2007) .......... 38
Fig.3.17: Low pass SST images at scale 2 at (a) August 10,
          and (b) August 13, 1999 of the Aegean Sea. White
          marked areas indicate occurring thermal anomalies .... 39
Fig.3.18: Low pass SST images at scale 2 at (a) August 06,
          and (b) August 13, 2003 of the Ionian Sea. White
          marked areas indicate occurring thermal anomalies .... 39
Fig.3.19: Linear cloud structure (indicated with the yellow
          arrow) in the SST distribution south of the Ionian
          Sea on February, 28, 2004 ............................ 40
Fig.3.20: Multi-resolution analysis by Haar wavelet of SST
          scene in the Ionian Sea from February 29, 2004.
          Calculations are performed with (ITT, 2007) .......... 42
Fig.3.21: Wavelet power spectrum of SST scene in the Ionian
          Sea from February 29, 2004. The arrow in the high
          pass sub-band at scale 2 indicates the linear cloud
          structure. Calculations are performed with (ITT,
          2007) ................................................ 43
Fig. А.1: Transmittance of atmospheric constituents and
          the total atmospheric transmittance in the thermal
          infra-red range (mid-latitude summer model with
          rural aerosol, vis = 23 km) .......................... 51
Fig. A.2: The atmospheric effect on NOAA-7 AVHRR band
          temperatures in different models (Wan, 1999):
          T4 and T5 is at-sensor brightness temperature in
          AVHRR channels 4(11 pm) and 5 (12pm), Ts is the
          surface temperature .................................. 52
Fig. A.3: Atmospheric transmission (a), path radiance (b)
          and at-sensor brightness temperature (c) of a
          surface with at-ground brightness temperature of
          300 К as functions of the off-nadir viewing angle
          (mid-latitude summer model with rural aerosol,
          vis = 23 km) ......................................... 53
Fig. A.4: At-ground and at-sensor brightness temperature of
          a surface with a thermodynamic temperature of
          300 К as a function of surface emissivity (mid-
          latitude summer atmospheric model with a rural
          aerosol, vis = 23 km) ................................ 54
Fig. A.5: Spectral emissivity of typical natural objects
          from the ASTER spectral library in the 8-14pm
          spectral range ....................................... 55
Fig. A.6: Emissivity of objects from the ASTER spectral
          library in the MODIS 11 pm spectral channel and
          the emissivity difference in the MODIS 11 pm and
          12 pm spectral channels .............................. 56
Fig. A.7: Emissivity of water in the MODIS 11 pm spectral
          band as a function of the incidence angle ............ 57
Fig. A.8: Seasonal variation of the mean regional
          temperature: a - sea surface temperature over
          the Aegean See; b - daytime land surface
          temperature over Greece; с - night-time land
          surface temperature over Greece ...................... 59
Fig. A.9: Diurnal variation of the land surface temperature.
          (http://apollo.lsc.vsc.edu/classes/met130/notes/
          chapter3/daily trend5.html) .......................... 60
Fig.A.10: Day-night-time difference of the mean regional
          temperature over Greece .............................. 60
Fig.A.11: Standard deviation (SD) of the spatial surface
          temperature variation: a - sea surface temperature
          over the Aegean See; b - daytime land surface
          temperature over Greece; с - night time land
          surface temperature over Greece ...................... 61
Fig.A.12: Standard deviation of the "meteorological
          variations" of the surface temperature: a -sea
          surface temperature over the Aegean See; b - 
          daytime land surface temperature over Greece;
          с - night-time land surface temperature over
          Greece; solid line - total effect, dashed line -
          after subtraction of the regional effect ............. 62
Fig.A.13: Standard deviation of the surface temperature
          after a shift of 1 pixel along a diagonal: a -
          sea surface temperature over the Aegean See;
          b - daytime land surface temperature over Greece;
          с - night-time land surface temperature over
          Greece ............................................... 64
Fig. B.1: An empirical relation between tmm and MMD based
          on 86 laboratory reflectance spectra of rocks,
          soils, vegetation, snow and water (Gillespie et
          al, 1999) ............................................ 72
Fig. С.1: Spectral characteristics of standard MODTRAN clouds
          and fogs, vegetation and snow (a) in the VIS-SWIR
          and (b) in the MIR-TIR spectral ranges ............... 78
Fig. C.2: Clouds and other objects in a diagram showing TIR
          temperature & VIS+NIR reflectance. The cloud
          detection region according to the IGPB algorithm
          is blue shaded ....................................... 79
Fig. C.3: Clouds and other objects in diagram of TIR
          temperature & MIR reflectance ........................ 79
Fig. C.4: Cloud detection in a MODIS image: a - VIS channel 1
          (0.62-0.67pm); b - TIR channel 31 (10.78-
          11.28 pm) ............................................ 81
Fig. C.5: Map of the region of the earthquake. The epicenters
          of the earthquakes on August, 14, 2003 and March,
          1, 2004 are marked with a star. The plate boundary,
          major fault lines and the type of faulting are also
          indicated (Cervone et al, 2004) ...................... 84
Fig. С.6: Linear cloud structure (indicated with the yellow
          arrow) in the SST distribution south of the Ionian
          Sea on 28 February 2004 .............................. 84
Fig. D.1: Optical scheme of MIBS ............................... 94
Fig. D.2: Overall view of the MIBS bread board (Leijtens &
          de Goeij, 2005) ...................................... 94
Fig. D.3: The main all-reflective optics elements of MERTIS,
          consisting of the Three Mirror Anastigmat (TMA)
          and the Offner spectrometer together with the
          micro-bolometer 2-D array detector focal plane ....... 95
Fig. D.4: Overall view of MERTIS (Walter et al, 2006) .......... 96

Content of Tables

Table 3.1: Main natural and observational factors affecting
           TIR signal (Tramutoli et al, 2005) .................. 17
Table B.1: NOAA-18 regression coefficients for different
           equations (http://noaasis.noaa.gov/NOAASIS/pubs/
           SST/noaa18sst.txt) .................................. 67
Table B.2: Error estimate of the generalized split-window
           MODIS LST algorithm (Wan and Dozier, 1996; Wan,
           1999) ............................................... 69
Table D.1: Several observation characteristics of sensors
           currently used for detection of thermal anomalies
           as Earthquake precursors ............................ 86
Table D.2: Assumed spatial sampling intervals and swath
           widths of the FMC main sensor and the
           supplementary two band imaging TIR sensors .......... 90
Table D.3: GMES IR Element TIR instrument main
           characteristics - from (GMES Infrared Element,
           2005) ............................................... 91


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:19:54 2019. Размер: 22,336 bytes.
Посещение N 2113 c 16.06.2009