Memoirs of the American Mathematical Society; Vol.198, N 927 (Providence, 2009). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаBrownian Brownian motion-I / Chernov N., Dolgopyat D. - Providence: AMS, 2009. - vii, 193 p.: ill. - (Memoirs of the American Mathematical Society; Vol.198, N 927) - ISBN 978-0-8218-4282-9; ISSN 0065-9266
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
Chapter 1. Introduction ......................................... 1

1.1. The model .................................................. 1
1.2. The container .............................................. 2
1.3. Billiard approximations .................................... 3

Chapter 2. Statement of results ................................. 7

2.1. Heavy disk in 'equilibrium' (linear motion) ................ 7
2.2. Heavy disk at rest (slow acceleration) ..................... 9
2.3. Heavy disk of small size .................................. 11
2.4. Comparison to previous works .............................. 12

Chapter 3. Plan of the proofs .................................. 15

3.1. General strategy .......................................... 15
3.2. Precise definitions ....................................... 17
3.3. Key technical results ..................................... 20

Chapter 4. Standard pairs and equidistribution ................. 25

4.1. Unstable vectors .......................................... 25
4.2. Unstable curves ........................................... 29
4.3. Homogeneous unstable curves ............................... 33
4.4. Standard pairs ............................................ 36
4.5. Perturbative analysis ..................................... 42
4.6. Equidistribution properties ............................... 47

Chapter 5. Regularity of the diffusion matrix .................. 57

5.1. Transport coefficients .................................... 57
5.2. Reduction to a finite series .............................. 62
5.3. Integral estimates: general scheme ........................ 64
5.4. Integration by parts ...................................... 69
5.5. Cancellation of large boundary terms ...................... 77
5.6. Estimation of small boundary terms ........................ 81
5.7. Two-sided integral sums ................................... 84
5.8. Bounding off-diagonal terms ............................... 88
5.9. Holder approximation ...................................... 90

Chapter 6. Moment estimates .................................... 93

6.1. General plan .............................................. 93
6.2. Structure of the proofs ................................... 98
6.3. Short term moment estimates for V ........................ 100
6.4. Moment estimates-a priori bounds ......................... 103
6.5. Tightness ................................................ 110
6.6. Second moment ............................................ 113
6.7. Martingale property ...................................... 115
6.8. Transition to continuous time ............................ 117
6.9. Uniqueness for stochastic differential equations ......... 118

Chapter 7. Fast slow particle ................................. 123

Chapter 8. Small large particle ............................... 129

Chapter 9. Open problems ...................................... 133

9.1. Collisions of the massive disk with the wall ............. 133
9.2. Longer time scales ....................................... 133
9.3. Stadia and the piston problem ............................ 133
9.4. Finitely many particles .................................. 134
9.5. Growing number of particles .............................. 135
9.6. Particles of positive size ............................... 136

Appendix A. Statistical properties of dispersing
            billiards ......................................... 139

       A.l. Decay of correlations: overview ................... 139
       A.2. Decay of correlations: extensions ................. 149
       A.3. Large deviations .................................. 153
       A.4. Moderate deviations ............................... 154
       A.5. Nonsingularity of diffusion matrix ................ 158
       A.6. Asymptotics of diffusion matrix ................... 159

Appendix B. Growth and distortion in dispersing
            billiards ......................................... 167

       B.l. Regularity of H-curves ............................ 167
       B.2. Invariant Section Theorem ......................... 171
       B.3. The function space fig.1 ............................. 174

Appendix C. Distortion bounds for two particle system ......... 177

Bibliography .................................................. 187
Index ......................................................... 193


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:19:54 2019. Размер: 8,095 bytes.
Посещение N 1869 c 16.06.2009