Knorr D. Spatial modelling of greenhouse gas compartments for improved full carbon accounting in boreal ecosystems (Gottingen, 2007). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаKnorr D. Spatial modelling of greenhouse gas compartments for improved full carbon accounting in boreal ecosystems. - Gottingen: Sierke, 2007. - xxvi, 202 p. - ISBN 978-3-940333-30-8
 

Оглавление / Contents
 
Acknowledgement ................................................. I
Abstract ...................................................... 111
Zusammenfassung ................................................. V
Table of Contents .............................................. XV
Figures ....................................................... XIX
Tables ...................................................... XXIII
Abbreviations ................................................. XXV

1. Introduction ................................................. 1
2. Scientific background ........................................ 5
   2.1 Greenhouse gases and global warming ...................... 5
   2.2. The carbon cycle ........................................ 6
        2.2.1. Carbon Dioxide ................................... 9
        2.2.2. Methane ......................................... 12
   2.3. Parameters and processes affecting carbon fluxes
        and pools with emphasis on boreal ecosystems ........... 14
        2.3.1. Terrestrial vegetation .......................... 14
               2.3.1.1. Parameters affecting terrestrial
                        primary production ..................... 14
               2.3.1.2. Vegetation communities and plant
                        species ................................ 16
               2.3.1.3. Developmental stage and activity of
                        plants ................................. 18
        2.3.2. Soil ............................................ 19
               2.3.2.1. Climate ................................ 20
               2.3.2.2. Overlying vegetation ................... 21
               2.3.2.3. Topography ............................. 22
               2.3.2.4. Soil characteristics ................... 23
        2.3.3. Disturbances .................................... 24
        2.3.4. Impact of future climate change on the role
               of boreal forests for the global carbon
               balance ......................................... 27
   2.4. Derivation of carbon cycle components .................. 29
        2.4.1. Direct methods .................................. 29
        2.4.2. Remote sensing .................................. 31
        2.4.3. Spatial modelling with Geographic
               Information Systems ............................. 36
               2.4.3.1. Predictive vegetation mapping .......... 36
               2.4.3.2. Soil landscape modelling ............... 38
               2.4.3.3. Regionalisation of landscape
                        elements and scaling problem ........... 41
        2.4.4. Biosphere models for carbon accounting in
               boreal ecosystems ............................... 43
               2.4.4.1. Process-based models ................... 43
               2.4.4.2. Empirical models ....................... 45
        2.4.5. Uncertainties in carbon accounting .............. 47
3. Objective and methodology ................................... 49
   3.1. Scientific Need ........................................ 49
   3.2. Objectives ............................................. 50
   3.3. Methodology ............................................ 51
4. Description of study region ................................. 53
   4.1. Geographic location .................................... 53
   4.2. Climate ................................................ 54
   4.3. Topography ............................................. 55
   4.4. Soils, permafrost and wetlands ......................... 56
   4.5. Vegetation patterns .................................... 58
   4.6. Disturbances ........................................... 64
5. Data Basis .................................................. 67
   5.1. Climate data ........................................... 67
   5.2. Soil database .......................................... 67
   5.3. IIASA's vegetation map and forest inventory data ....... 68
   5.4. Land cover ............................................. 71
   5.5. MODIS and AVHRR Vegetation Continuous Field (VCF)
        products ............................................... 73
   5.6. Digital Elevation Models ............................... 74
   5.7. Water bodies and wetland types ......................... 75
   5.8. Disturbances ........................................... 78
6. IIASA's landscape ecosystem model ........................... 79
   6.1. Model description ...................................... 79
   6.2. Model uncertainties .................................... 83
   6.3. Sensitivity Analysis ................................... 84
        6.3.1. Approach ........................................ 84
        6.3.2. Results of sensitivity analysis ................. 85
        6.3.3. Conclusions ..................................... 88
7. Spatial Modelling of Greenhouse Gas Compartments ............ 89
   7.1. Predictive vegetation mapping for derivation of
        enhanced land cover map ................................ 89
        7.1.1. Decision rules .................................. 90
               7.1.1.1. Application of ecoregions and
                        plausibility rules ..................... 91
               7.1.1.2. Fuzzy land cover classification
                        using Vegetation Continuous Field
                        products ............................... 92
               7.1.1.3. Digital elevation models and
                        topographic rules ...................... 94
               7.1.1.4. Classification of wetland types and
                        tree species in non-mountainous
                        regions using soil characteristics ..... 95
               7.1.1.5. Classification of tundra wetlands
                        and riparian vegetation using water
                        bodies map ............................. 97
               7.1.1.6. Disturbances ........................... 97
        7.1.2. Propagation of uncertainties and
               inconsistencies ................................. 98
        7.1.3. Sensitivity of post-classification process
               and class requirements of initial land
               cover map ....................................... 99
        7.1.4. Result of rule-based post-classification ....... 102
   7.2. Refinement of soil database and estimation of soil
        carbon density ........................................ 111
        7.2.1. Refinement of soil database using terrain
               parameters ..................................... 111
               7.2.1.1. Digital terrain analysis .............. 1ll
               7.2.1.2. Derivation of combined soil index ..... 116
               7.2.1.3. Application of soil index for
                        prediction of soil properties ......... 118
        7.2.2. Estimation of soil organic carbon (SOC) ........ 119
               7.2.2.1. Estimation of SOC from original
                        soil database ......................... 120
               7.2.2.2. Estimation of SOC with
                        consideration of surface area ......... 121
               7.2.2.3. Estimation of SOC with
                        consideration of topographic
                        effects ............................... 124
   7.3. Regionalisation and derivation of Greenhouse Gas
        Compartments .......................................... 126
8. Estimation of carbon fluxes and pools based on GGCs ........ 127
   8.1. Implementation of Greenhouse Gas Compartments
        in IIASA model ........................................ 127
        8.1.1. Compilation of input database .................. 127
        8.1.2. Modifications of HAS A model ................... 129
   8.2. Results and discussion ................................ 130
9. Conclusions and Recommendations ............................ 137

References .................................................... 141

Appendix ...................................................... 165

Appendix A: Used data sets .................................... 165
Appendix B: Attributes of soil database ....................... 166
Appendix C: Attributes and parameters of IIASA's
            vegetation database and model ..................... 168
Appendix E: Requirements for input files of land
            cover post-classification process ................. 173
Appendix F: Decision rules for land cover post-
            classification process ............................ 175
Appendix G: Error propagation and compensation in post-
            classification process ............................ 189
Appendix H: Produced rule-based land cover map ................ 191

List of publications .......................................... 201
Figures ....................................................... XIX

Figures

Figure 1: Pools and fluxes of the carbon cycle .................. 7
Figure 2: The range of time scales of major processes within
          the global carbon cycle ............................... 8
Figure 3: Terrestrial carbon uptake and storage ................ 11
Figure 4: Location of study region and administrative
          regions .............................................. 54
Figure 5: Topography of study region ........................... 55
Figure 6: Distribution of permafrost types and wetlands
          in the study region .................................. 57
Figure 7: Ecological zones of the study region ................. 58
Figure 8: Typical tundra with open water bodies ................ 59
Figure 9: Dark coniferous forest on western site of Yenisey
          River near Bor (61.5° N, 90° E) ...................... 61
Figure 10:Pine {Pinus silvestris) stand with lichens on
          the eastern side of the Yenisey (light coniferous
          forest) in the middle taiga near Zotino (61° N,
          89° E) ............................................... 61
Figure 11:Closed cedar (Pinus sibiricd) forest in southern
          mountain taiga of Eastern Sayan Mountains near
          Ermakovskaya (52.5°N, 92.5°E) (August 2004) .......... 62
Figure 12:Typical landscape with sparse forest, alpine
          meadow and bare rocks in top aititudinal belts
          in Eastern Sayan Mountains (around 52.5°N, 92.5°E) ... 63
Figure 13:Steppe vegetation in Khakasia (54.5 N, 91 ° E) ....... 63
Figure 14:Typical post-fire succession with birch as
          dominant species in the middle taiga (61° N,90°E) .... 64
Figure 15:Parent material of soil database at scale 1:1 Mio
          for Krasnoyarsk Kray and Khakass Republic ............ 68
Figure 16:Forest inventory test sites in the study region ...... 70
Figure 17:Regional land cover product from MODIS data
          for 2003 ............................................. 73
Figure 18:MODIS VCF for 2001, a) tree cover, b) herbaceous
          vegetation cover, c) barren ground cover
          (in percent) ......................................... 74
Figure 19:Digital Elevation Model (SRTM and GTOPO'30),
          500 m resolution ..................................... 75
Figure 20:Permanently open water bodies in the western
          Taimyr tundra based on summer acquisitions in 2003 ... 76
Figure 21:Tundra wetiand zone derived from ASAR WS open water
          bodies map and Russian base data by density
          analysis of lakes ‹ 30 ha ............................ 76
Figure 22:Non-forested peadands in middle and southern taiga
          as identified from ASAR WS, location of inventory
          site Nizhne Yeniseysk and more detailed looks in
          two test sites with open bogs from inventory in
          comparison with peadands as derived from ASAR WS ..... 77
Figure 23:Disturbance map for the period 1992 to 2003 .......... 78
Figure 24:Ecoregions used in IIASA model ....................... 80
Figure 25:Uncertainty in NEP across the study region ........... 83
Figure 26:Flowchart of data fusion and application of
          decision rules with two examples ..................... 91
Figure 27:Aggregated ecoregions for development and
          application of different classification rules ........ 92
Figure 28:Rules for forest type classification using
          the AVHRR VCF for pixels, which were not
          classified as forest in the original land
          cover map, but with at least 5% tree cover
          in the MODIS VCF  .................................... 93
Figure 29:Rules for classification of barren ground ............ 94
Figure 30:Types of soil parent material, which were used
          for differentiation between evergreen needleleaf
          species .............................................. 96
Figure 31:Decision tree for differentiation of evergreen
          needleleaf trees in non-mountainous regions
          using information about soil parent material ......... 96
Figure 32:Differences between input and output land cover
          maps ................................................ 100
Figure 33:Differences in tree species distribution between
          the four output land cover maps ..................... 101
Figure 34:Result of rule-based post-classification: 500 m
          land cover map consisting of three layers for
          dominant tree species, non-forest classes and
          unvegetated areas ................................... 103
Figure 35:Comparison of the rule-based land cover map with
          two forest inventory test sites ..................... 104
Figure 36:Overall pixel-based agreement between aggre-gated
          classes of rule-based land cover map and GLC2000 .... 105
Figure 37:Percent of all pixels per ecoregion of rule-based
          land cover map that have the same classification
          in the IIASA map (user's accuracy) .................. 105
Figure 38:Example for better georeferencing of the
          rule-based land cover map compared to the
          IIASA map ........................................... 106
Figure 39:Generalised polygons in IIASA map compared to
          single or groups of pixels as islands in a
          dominating matrix in the rule-based land
          cover map ........................................... 107
Figure 40:Examples for different classifications of the
          IIASA map and the rule-based land cover map in
          comparison with Landsat 7 ETM imagery ............... 108
Figure 41:Frequency distribution of aggregated land cover
          classes in percent of total area .................... 109
Figure 42:Frequency distribution of tree species in number
          of pixels ........................................... 109
Figure 43:Differentiation of sun and shadow slopes
          according to Bodenkundliche Kartieranleitung ........ 112
Figure 44:Slope in % derived from SRTM DEM with 100 m and
          500 m resolution. Due to interpolation coarser
          resolution leads to a flattening of the relief
          and hence to lower slopes ........................... 113
Figure 45:Curvature derived from SRTM DEM with 100 m and
          500 m resolution .................................... 114
Figure 46:Classified topographic wetness index derived
          from SRTM DEM with 100 m and 500 m resolution ....... 115
Figure 47:Combined soil index derived from addition of
          slope, curvature and aspect indices ................. 118
Figure 48:Comparison of original soil polygons with soil
          regions derived from digital terrain analysis ....... 119
Figure 49:Mean soil carbon density for the complete soil
          profile derived from soil database at scale
          1:1 Mio ............................................. 121
Figure 50:Relationship between surface area and pixel area .... 122
Figure 51:Different scales and location of topographically
          different test sites for the calculation of the
          surface area ........................................ 122
Figure 52:Soil carbon density in the study region derived
          from the refined soil database ...................... 125
Figure 53:Comparison between carbon density map with
          consideration of topography and map from original
          soil database ....................................... 126
Figure 54:NPP density for the year 2003 calculated with
          IIASA model using GGC-database with 500 m spatial
          resolution and IIASA vegetation database at
          a scale of 1:1 Mio, and with LPJ with 0.5° spatial
          resolution .......................................... 134
Figure 55:Phytomass С density for the year 2003 calculated
          with IIASA model using GGC-database with 500 m
          spatial resolution and IIASA vegetation database
          at a scale of 1:1 Mio, and with LPJ with 0.5°
          spatial resolution. 134

Tables

Table 1: Residence time, global warming potentials for 20,
         100 and 500 years, atmospheric concentrations and
         annual increase rates of major greenhouse gases ........ 6
Table 2: Sinks and sources of atmospheric CH4 .................. 13
Table 3: Average maximum values for net photosynthesis
         under natural atmospheric CO, concentration and
         optimal site conditions ............................... 17
Table 4: Maintenance respiration of leaves and needles
         in summer at 20°C at the beginning of the night.
         Respiratory intensity declines in the course of
         the night ............................................. 18
Table 5: Comparison of global emissions from biomass burning
         with emissions from all sources (including biomass
         burning) .............................................. 25
Table 6: Global estimates of annual amounts of biomass
         burning and the resulting release of carbon into
         the atmosphere ........................................ 26
Table 7: Selected investigations on soil landscape modelling,
         including the modelled soil parameters and the used
         topographic attributes ................................ 40
Table 8: Results of selected investigations on the
         estimation of the carbon sink by increment of
         woody biomass in Russian forests ...................... 47
TABLE 9: Key climatic data for Siberia ......................... 55
Table 10:Land cover classes of SIBERIA-II land cover map
         and training data ..................................... 72
Table 11:Ecoregions of IIASA's vegetation database,
         selected for sensitivity analysis of IIASA model ...... 84
Table 12:Attributes of IIASA vegetation database, which
         do not affect the output parameters of the IIASA
         model (directly) ...................................... 85
Table 13:Influence of input parameters on output parameters
         of IIASA model ........................................ 86
Table 14:Differences of output parameters produced by
         different tree species ................................ 87
Table 15:Deviations of outputs produced from average values
         for each tree species and ecoregion to original
         outputs in percent .................................... 87
Table 16:Minimum requirements for class definitions of
         initial land cover map with current data situation
         and with the availability of a new MODIS VCF with
         differentiation of leaf type and longevity ........... 102
Table 17:User's and producer's accuracy of some land cover
         classes of the rule based land cover product
         compared to the forest inventory test sites .......... 104
Table 18:Percentage of overall pixel-based agreement
         between rule-based (rb) land cover map, forest
         inventory test sites, 1IASA vegetation map and
         GLC2000 .............................................. 110
Table 19:Soil index derived from terrain attribute aspect
         with thresholds by Bodenkundliche Karueranleitung
         (AG Boden 1994) ...................................... 112
Table 20:Soil index derived from terrain attribute slope
         with thresholds from Bodenkundliche
         Karueranleitung (AG BODHN 1994) ...................... 113
Table 21:Soil index derived from terrain attribute slope ...... 114
Table 22:Soil index derived from inverse topographic
         wetness index ........................................ 116
Table 23:Correlation between terrain attributes ............... 116
Table 24:Combination of slope and curvature index ............. 117
Table 25:Combination of slope, curvature and aspect index
         to derive combined soil index ........................ 117
Table 26:Impact of surface area (SA) on calculation of soil
         carbon content ....................................... 123
Table 27:Results of carbon accounting with and without
         consideration of topographic effects ................. 124
Table 28:Application of MODIS VCF tree cover classes for
         assignment of statistical growing stock values
         to pixels of specific tree species ................... 128
Table 29:Input and output parameters of original I1ASA
         model, which have been deleted from C++ source
         code for simplification and adaptation of IIASA
         model to new input database .......................... 130
Table 30:Results of carbon accounting using the IIASA model
         with the produced GGC-database, the IIASA
         vegetation database and from independent
         calculations with the DGVM LPJ ....................... 131
Table 31:NPP densities (gC/m2-a) in the study region from
         various references and measurement methods ........... 133


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:19:52 2019. Размер: 25,852 bytes.
Посещение N 2464 c 02.06.2009