Drikakis D. High-resolution methods for incompressible and low-speed flows (Вerlin, 2005). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаDrikakis D. High-resolution methods for incompressible and low-speed flows. - Вerlin: Springer, 2005. – xii, 622 p. - ISBN 3-540-22136-0
 

Оглавление / Contents
 
1. Introduction ................................................. 1

Part I. Fundamental Physical and Model Equations

2. The Fluid Flow Equations ..................................... 7
   2.1.  Mathematical Preliminaries ............................. 7
   2.2.  Kinematic Considerations ............................... 9
   2.3.  The Equations for Variable Density Flows .............. 10
         2.3.1.  The Continuity Equation ....................... 10
         2.3.2.  The Momentum Equations ........................ 11
         2.3.3.  The Energy Equation ........................... 14
   2.4.  Compressible Euler Equations .......................... 16
   2.5.  Low-Mach Number Scaling ............................... 20
   2.6.  Boussinesq Approximation .............................. 23
   2.7.  Variable Density Flow ................................. 23
   2.8.  Zero Mach Number Combustion ........................... 24
   2.9.  Initial and Boundary Conditions ....................... 25
3. The Viscous Fluid Flow Equations ............................ 27
   3.1.  The Stress and Strain Tensors for a Newtonian
         Fluid ................................................. 27
   3.2.  The Navier-Stokes Equations for Constant Density
         Flows ................................................. 31
   3.3.  Non-Newtonian Constitutive Equations for the
         Shear-Stress Tensor ................................... 33
         3.3.1.  Generalized Newtonian Fluids .................. 33
         3.3.2.  Viscoelastic Fluids ........................... 34
         3.3.3.  Other Viscoelastic Models ..................... 37
   3.4.  Alternative Forms of the Advective and Viscous
         Terms ................................................. 38
   3.5.  Nondimensionalization of the Governing Equations ...... 39
   3.6.  General Remarks on Turbulent Flow Simulations ......... 42
   3.7.  Reynolds-Averaged Navier-Stokes Equations (RANS) ...... 43
   3.8.  Large Eddy Simulation (LES) ........................... 47
   3.9.  Closing Remarks ....................................... 49
4. Curvilinear Coordinates and Transformed Equations ........... 51
   4.1.  Generalized Curvilinear Coordinates ................... 51
   4.2.  Calculation of Metrics ................................ 55
   4.3.  Transformation of the Fluid Flow Equations ............ 57
   4.4.  Viscous Terms ......................................... 60
   4.5.  Geometric Conservation Law ............................ 63
5. Overview of Various Formulations and Model Equations ........ 67
   5.1.  Overview of Various Formulations of the
         Incompressible Flow Equations ......................... 67
         5.1.1.  Vorticity/Stream-Function Formulation ......... 67
         5.1.2.  The Vorticity/Vector-Potential Formulation .... 69
         5.1.3.  Vorticity-Velocity Formulation ................ 70
         5.1.4.  Pressure-Poisson Formulation .................. 70
         5.1.5.  Projection Formulation ........................ 71
         5.1.6.  Artificial-Compressibility Formulation ........ 71
         5.1.7.  Penalty Formulation ........................... 72
         5.1.8.  Hybrid Formulations ........................... 73
   5.2.  Model Equations ....................................... 75
         5.2.1.  Advection-Diffusion Equation .................. 75
         5.2.2.  Burgers' Equation ............................. 76

6. Basic Principles in Numerical Analysis ...................... 79
   6.1.  Stability, Consistency and Accuracy ................... 79
   6.2.  Fourier Analysis ...................................... 83
         6.2.1.  Fourier Analysis of First-Order Upwind ........ 85
         6.2.2.  Fourier Analysis of Second-Order Upwind ....... 86
   6.3.  Modified Equation Analysis ............................ 90
   6.4.  Verification via Sample Calculations .................. 94
7. Time Integration Methods .................................... 99
   7.1.  Time Integration of the Flow Equations ................ 99
   7.2.  Lax-Wendroff-Type Methods ............................ 100
   7.3.  Other Approaches to Time-Centering ................... 102
   7.4.  Runge-Kutta Methods .................................. 103
         7.4.1.  Second-Order Runge-Kutta ..................... 104
         7.4.2.  Third-Order Runge-Kutta ...................... 106
         7.4.3.  Fourth-Order Runge-Kutta ..................... 107
         7.4.4.  TVD Runge-Kutta Methods Applied to
                 Hyperbolic Conservation Laws ................. 109
   7.5.  Linear Multi-step Methods ............................ 113
         7.5.1.  Adams-Bashforth Method ....................... 113
         7.5.2.  Adams-Moulton Method ......................... 116
         7.5.3.  Backward Differentiation Formulas ............ 119
8. Numerical Linear Algebra ................................... 121
   8.1.  Basic Numerical Linear Algebra ....................... 121
   8.2.  Basic Relaxation Methods ............................. 123
   8.3.  Conjugate Gradient and Krylov Subspace Methods ....... 126
   8.4.  Multigrid Algorithm for Elliptic Equations ........... 130
   8.5.  Multigrid Algorithm as a Preconditioner for
         Krylov Subspace Methods .............................. 138
   8.6.  Newton's and Newton-Krylov Method .................... 139
   8.7.  A Multigrid Newton-Krylov Algorithm .................. 140

Part II. Solution Approaches

9. Compressible and Preconditioned-Compressible Solvers ....... 147
   9.1.  Reconstructing the Dependent Variables ............... 147
         9.1.1.  Riemann Solvers .............................. 148
         9.1.2.  Basic Predictor-Corrector .................... 152
         9.1.3.  Characteristic Direct Eulerian ............... 153
         9.1.4.  Lagrange-Remap Approach ...................... 155
   9.2.  Reconstructing the Fluxes ............................ 156
         9.2.1.  Flux Splitting ............................... 157
         9.2.2.  Flux Splitting Time Integration .............. 158
   9.3.  Preconditioning for Low Speed Flows .................. 160
         9.3.1.  Overview of Preconditioning Techniques ....... 160
         9.3.2.  Preconditioning Choices for Compressible
                 Flows ........................................ 161
         9.3.3.  Preconditioning of Numerical Dissipation ..... 167
         9.3.4.  Differential Preconditioners ................. 169
10. The Artificial Compressibility Method ..................... 173
    10.1. Basic Formulation ................................... 173
    10.2. Convergence to the Incompressible Limit ............. 174
    10.3. Preconditioning and the Artificial
          Compressibility Method .............................. 176
    10.4. Eigenstructure of the Incompressible Equations ...... 177
    10.5. Estimation of the Artificial Compressibility
          Parameter ........................................... 180
    10.6. Explicit Solvers for Artificial Compressibility ..... 183
    10.7. Implicit Solvers for Artificial Compressibility ..... 184
          10.7.1. Time-Linearized (Euler) Implicit Scheme ..... 184
          10.7.2. Implicit Approximate Factorization
                  Method ...................................... 185
          10.7.3. Implicit Unfactored Method .................. 186
   10.8. Extension of the Artificial Compressibility to
         Unsteady Flows ....................................... 188
   10.9. Boundary Conditions .................................. 190
   10.10.Local Time Step ...................................... 191
   10.11.Multigrid for the Artificial-Compressibility
         Formulation .......................................... 192
         10.11.1. Rationale for Three-Grid Multigrid .......... 192
         10.11.2. FMG-FAS Algorithm ........................... 193
         10.11.3. Remarks on the Full Approximation
                  Storage (FAS) Procedure ..................... 196
         10.11.4. Effects of Pre- and Post-Relaxation on
                  the Efficiency of FMG-FAS ................... 197
         10.11.5. Transfer Operators .......................... 198
         10.11.6. Adaptive Multigrid .......................... 201
11.Projection Methods: The Basic Theory and the Exact Pro
   jection Method ............................................. 209
   11.1. Grids - Variable Positioning ......................... 210
   11.2. Continuous Projections for Incompressible Flow ....... 211
         11.2.1. Continuous Projections for Constant
                 Density Incompressible Flow .................. 212
         11.2.2. Continuous Projections for Variable
                 Density Incompressible Flow .................. 213
   11.3. Exact Discrete Projections ........................... 213
         11.3.1. Cell-Centered Exact Projections .............. 214
         11.3.2. Vertex-Centered Exact Projections ............ 217
         11.3.3. The MAC Projection ........................... 219
         11.3.4. The MAC Projection Used with
                 Godunov-Type Methods ......................... 220
         11.3.5. Other Exact Projections ...................... 223

   11.4. Second-Order Projection Algorithms for
         Incompressible Flow .................................. 223
   11.5. Boundary Conditions .................................. 225
         11.5.1. Solvability .................................. 225
         11.5.2. Solid Wall Boundary Conditions ............... 227
12.Approximate Projection Methods ............................. 237
   12.1. Numerical Issues with Approximate Projection
         Methods .............................................. 237
   12.2. Projection Algorithms for Incompressible Flow ........ 243
   12.3. Analysis of Projection Algorithms .................... 244
         12.3.1. Basic Definitions for Analysis ............... 244
         12.3.2. Analysis of Approximate Projection
                 Algorithms ................................... 245
         12.3.3. Incremental Velocity Difference Projection ... 247
         12.3.4. Pressure Velocity Difference Projection ...... 248
         12.3.5. Incremental Velocity Projection .............. 248
         12.3.6. Pressure Velocity Projection ................. 249
         12.3.7. Discussion of Analysis Results ............... 249
   12.4. Pressure Poisson Equation Methods .................... 250
         12.4.1. SIMPLE-Type Methods .......................... 251
         12.4.2. Implicit High-Resolution Advection ........... 254
         12.4.3. Implicit Direct Methods ...................... 255
   12.5. Filters .............................................. 256
         12.5.1. Classification of Error Modes ................ 256
         12.5.2. Projection Filters ........................... 258
         12.5.3. Velocity Filters ............................. 263
   12.6. Method Demonstration and Verification ................ 271
         12.6.1. Vortex-in-a-Box .............................. 271
         12.6.2. Inflow with Shear ............................ 272
         12.6.3. Doubling Periodic Shear Layer ................ 273
         12.6.4. Long Time Integration ........................ 274
         12.6.5. Circular Drop Problem ........................ 279
         12.6.6. Results Using Various Filters ................ 285

Part III. Modern High-Resolution Methods

13.Introduction to Modern High-Resolution Methods ............. 295
   13.1. General Remarks about High-Resolution Methods ........ 295
   13.2. The Concept of Nonoscillatory Methods and Total
         Variation ............................................ 301
   13.3. Monotonicity ......................................... 303
   13.4. General Remarks on Riemann Solvers ................... 305
14.High-Resolution Godunov-Туре Methods for Projection Meth
   ods ........................................................ 309
   14.1. First-Order Algorithm ................................ 309
   14.2. High-Resolution Algorithms ........................... 316
         14.2.1. Piecewise Linear Methods (PLM) ............... 316
         14.2.2. Piecewise Parabolic Methods (PPM) ............ 320
         14.2.3. Algorithm Verification Tests ................. 323
   14.3. Staggered Grid Spatial Differencing .................. 325
   14.4. Unsplit Spatial Differencing ......................... 327
         14.4.1. Least Squares Reconstruction ................. 329
         14.4.2. Monotone Limiters and Extensions ............. 333
         14.4.3. Monotonic Constrained Minimization ........... 334
         14.4.4. Divergence-Free Reconstructions .............. 336
         14.4.5. Extending Classical TVD Limiters ............. 336
   14.5. Multidimensional Results ............................. 340
   14.6. Viscous Terms ........................................ 342
   14.7. Stability ............................................ 343
15.Centered High-Resolution Methods ........................... 347
   15.1. Lax-Friedrichs Scheme ................................ 348
   15.2. Lax-Wendroff Scheme .................................. 353
   15.3. First-Order Centered Scheme .......................... 358
         15.3.1. Random Choice Method ......................... 359
         15.3.2. FORCE ........................................ 361
         15.3.3. Variants of the FORCE Scheme ................. 363
   15.4. Second- and Third-Order Centered Schemes ............. 364
         15.4.1. Nessyahu-Tadmor Second-Order Scheme .......... 364
         15.4.2. Two-Dimensional Formulation .................. 367
         15.4.3. Third-Order Centered Scheme .................. 369
16.Riemann Solvers and TVD Methods in Strict Conservation
   Form ....................................................... 373
   16.1. The Flux Limiter Approach ............................ 373
   16.2. Construction of Flux Limiters ........................ 374
         16.2.1.Flux Limiter for the Godunov/Lax-Wendroff
                TVD Scheme .................................... 375
         16.2.2.Flux Limiter for the Characteristics-
                Based/Lax-Friedrichs Scheme ................... 376
   16.3. Other Approaches for Constructing Advective
         Schemes .............................................. 382
         16.3.1. Positive Schemes ............................. 382
         16.3.2. Universal Limiter ............................ 384
   16.4. The Characteristics-Based Scheme ..................... 384
         16.4.1. Introductory Remarks and Basic Formulation ... 384
         16.4.2. Dimensional Splitting ........................ 386
         16.4.3. Characteristics-Based Reconstruction
                 in Three Dimensions .......................... 389
         16.4.4. Reconstructed Characteristics-Based
                 Variables in Two Dimensions .................. 392
         16.4.5. High-Order Interpolation ..................... 393
         16.4.6. Advective Flux Calculation ................... 396
         16.4.7. Results ...................................... 397
   16.5. Flux Limiting Version of the CB Scheme ............... 404
   16.6. Implementation of the Characteristics-Based
         Method in Unstructured Grids ......................... 404
   16.7. The Weight Average Flux Method ....................... 406
         16.7.1. Basic Formulation ............................ 406
         16.7.2. TVD Version of the WAF Schemes ............... 408
   16.8. Roe's Method ......................................... 409
   16.9. Osher's Method ....................................... 412
   16.10.Chakravarthy-Osher TVD Scheme ........................ 414
   16.11.Harten, Lax and van Leer (HLL) Scheme ................ 416
   16.12.HLLC Scheme .......................................... 419
   16.13.Estimation of the Wave Speeds for the HLL
         and HLLC Riemann Solvers ............................. 420
   16.14.HLLE Scheme .......................................... 421
   16.15.Comparison of CB and HLLE Schemes .................... 421
   16.16."Viscous" TVD Limiters ............................... 424
17.Beyond Second-Order Methods ................................ 429
   17.1. General Remarks on High-Order Methods ................ 430
   17.2. Essentially Nonoscillatory Schemes (ENO) ............. 433
   17.3. ENO Schemes Using Fluxes ............................. 436
   17.4. Weighted ENO Schemes ................................. 439
         17.4.1. Third-Order WENO Reconstruction .............. 441
         17.4.2. Fourth-Order WENO Reconstruction ............. 442
   17.5. A Flux-Based Version of the WENO Scheme .............. 444
   17.6. Artificial Compression Method for ENO and WENO ....... 447
   17.7. The ADER Approach .................................... 448
         17.7.1. Linear Scalar Case ........................... 449
         17.7.2. Multiple Dimensions: Scalar Case ............. 451
         17.7.3. Extension to Nonlinear Hyperbolic Systems .... 453
   17.8. Extending and Relaxing Monotonicity in
         Godunov-Type Methods ................................. 455
         17.8.1. Accuracy and Monotonicity Preserving
                 Limiters ..................................... 455
         17.8.2. Extrema and Monotonicity Preserving
                 Methods ...................................... 460
         17.8.3. Steepened Transport Methods .................. 465
   17.9. Discontinuous Galerkin Methods ....................... 467
   17.10.Uniformly High-Order Scheme for Godunov-Type
         Fluxes ............................................... 469
   17.11.Flux-Corrected Transport ............................. 472
   17.12.MPDATA ............................................... 475

Part IV. Applications

18.Variable Density Flows and Volume Tracking Methods ......... 479
   18.1. Multimaterial Mixing Flows ........................... 479
         18.1.1. Shear Flows .................................. 480
         18.1.2. Rising Bubbles ............................... 482
         18.1.3. Rayleigh-Taylor Instability .................. 483
   18.2. Volume Tracking ...................................... 490
         18.2.1. Fluid Volume Evolution Equations ............. 492
         18.2.2. Basic Features of Volume Tracking
                 Methods ...................................... 493
   18.3. The History of Volume Tracking ....................... 495
   18.4. A Geometrically Based Method of Solution ............. 499
         18.4.1. A Geometric Toolbox .......................... 500
         18.4.2. Reconstructing the Interface ................. 502
         18.4.3. Material Volume Fluxes ....................... 510
         18.4.4. Time Integration ............................. 513
         18.4.5. Translation and Rotation Tests ............... 515
   18.5. Results For Vortical Flows ........................... 519
         18.5.1. Single Vortex ................................ 521
         18.5.2. Deformation Field ............................ 525


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:19:46 2019. Размер: 23,047 bytes.
Посещение N 2217 c 28.04.2009