Part I. Introduction
A Selected Introduction to Evolutionary Computation
Xin Yao ...................................................... 3
Part II. Knowledge Incorporation in Initialization, and
Mutation Recombination
The Use of Collective Memory in Genetic Programming
Keith Bearpark, Andy J. Keane ............................... 15
A Cultural Algorithm for Solving the Job Shop Scheduling Problem
Ricardo Landa Becerra, Carlos A. Coello Coello .............. 37
Case-Initialized Genetic Algorithms for Knowledge Extraction and
Incorporation
Judy Johnson, Sushil J. Louis ............................... 57
Using Cultural Algorithms to Evolve Strategies in A Complex
Agent-based System
David A. Ostrowski, Robert G. Reynolds ...................... 81
Methods for Using Surrogate Models to Speed Up Genetic Algorithm
Optimization: Informed Operators and Genetic Engineering
Khaled Rasheed, Xiao Ni, Swaroop Vattam .................... 103
Fuzzy Knowledge Incorporation in Crossover and Mutation
Jun Zhang, Henry S.H. Chung, Alan W.L. Lo, B.J. Нu ......... 123
Part III. Knowledge Incorporation in Selection and Reproduction
Learning Probabilistic Models for Enhanced Evolutionary
Computation
Peter A.N. Bosman, Dirk Thierens ........................... 147
Probabilistic Models for Linkage Learning in Forest Management
Els I. Ducheyne, B. De Baets, R. De Wulf ................... 177
Performance-Based Computation of Chromosome Lifetimes in
Genetic Algorithms
Adnan Acan, Yiice Tekol .................................... 195
Genetic Algorithm and Case-Based Reasoning Applied in
Production Scheduling
Pei-Chann Chang, Jih-Chang Hsieh, Yen-Wen Wang ............. 215
Knowledge-Based Evolutionary Search for Inductive
Concept Learning
Federico Divina, Elena Marchiori ........................... 237
An Evolutionary Algorithm with Tabu Restriction and Heuristic
Reasoning for Multiobjective Optimization
E.F. Khor, К.С. Tan, Y.J. Yang ............................. 255
Part IV. Knowledge Incorporation in Fitness Evaluations
Neural Networks for Fitness Approximation in Evolutionary
Optimization
Yaochu Jin, Michael Hüsken, Markus Olhofer,
Bernhard Sendhoff .......................................... 281
Surrogate-Assisted Evolutionary Optimization Frameworks for
High-Fidelity Engineering Design Problems
Yew Soon Ong, P.B. Nair, A.J. Keane, K.W. Wong ............. 307
Model Assisted Evolution Strategies
Holger Ulmer, Felix Streichert, Andreas Zell ............... 333
Part V. Knowledge Incorporation through Life-time Learning and
Human-Computer Interactions
Knowledge Incorporation Through Lifetime Learning
Kim W.С. Ku, M.W. Мак ...................................... 359
Local Search Direction for Multi-Objective Optimization Using
Memetic EMO Algorithms
Tadahiko Murata, Shiori Kaige and Hisao Ishibuchi .......... 385
Fashion Design Using Interactive Genetic Algorithm with
Knowledge-based Encoding
Hee-Su Kim, Sung-Bae Cho ................................... 411
Interactive Evolutionary Design
Ian С Parmee, Johnson A. Abraham ........................... 435
Part VI. Preference Incorporation in Multi-objective
Evolutionary Computation
Integrating User Preferences into Evolutionary
Multi-Objective Optimization
Jtirgen Branke, Kalyanmoy Deb .............................. 461
Human Preferences and their Applications in Evolutionary
Multi-Objective Optimization
Dragan Cvetkovic, Carlos A. Coello Coello .................. 479
An Interactive Fuzzy Satisficing Method for
Multiobjective Integer Programming Problems through
Genetic Algorithms
Kosuke Koto, Cahit Perkgoz, Masatoshi Sakawa ............... 503
Interactive Preference Incorporation in Evolutionary
Engineering Design
Jiachuan Wang, Janis P. Terpenny ........................... 525
Index ......................................................... 545
|