Nickel S. Location theory (New York, 2005). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаNickel S. Location theory: a unified approach. - Berlin; New York: Springer, 2005. - xx, 437 p.: ill. - ISBN 3-540-24321-6
 

Оглавление / Contents
 
Part I Location Theory and the Ordered Median Function

1. Mathematical Properties of the Ordered Median Function ....... 3

1.1. Introduction ............................................... 3
1.2. Motivating Example ......................................... 4
1.3. The Ordered Median Function ................................ 6
1.4. Towards Location Problems ................................. 15

Part II The Continuous Ordered Median Location Problem

2. The Continuous Ordered Median Problem ....................... 23

2.1. Problem Statement ......................................... 23
2.2. Distance Functions ........................................ 27
     2.2.1. The Planar Case .................................... 31
2.3. Ordered Regions, Elementary Convex Sets and Bisectors ..... 34
     2.3.1. Ordered Regions .................................... 34
     2.3.2. Ordered Elementary Convex Sets ..................... 35
     2.3.3. Bisectors .......................................... 39

3. Bisectors ................................................... 43

3.1. Bisectors - the Classical Case ............................ 43
3.2. Possible Generalizations .................................. 44
3.3. Bisectors - the General Case .............................. 46
     3.3.1. Negative Results ................................... 47
     3.3.2. Structural Properties .............................. 48
     3.3.3. Partitioning of Bisectors .......................... 59
3.4. Bisectors of Polyhedral Gauges ............................ 65
3.5. Bisectors of Elliptic Gauges .............................. 74
3.6. Bisectors of a Polyhedral Gauge and an Elliptic Gauge ..... 83
3.7. Approximation of Bisectors ................................ 96

4. The Single Facility Ordered Median Problem ................. 105

4.1. Solving the Single Facility OMP by Linear Programming .... 105
4.2. Solving the Planar Ordered Median Problem
     Geometrically ............................................ 110
4.3. Non Polyhedral Case ...................................... 117
4.4. Continuous OMPs with Positive and Negative Lambdas ....... 123
     4.4.1. The Algorithms .................................... 127
4.5. Finding the Ordered Median in the Rectilinear Space ...... 134

5. Multicriteria Ordered Median Problems ...................... 137

5.1. Introduction ............................................. 137
5.2. Multicriteria Problems and Level Sets .................... 138
5.3. Bicriteria Ordered Median Problems ....................... 139
5.4. The 3-Criteria Case ...................................... 151
5.5. The Case Q > 3 ........................................... 158
5.6. Concluding Remarks ....................................... 162

6. Extensions of the Continuous Ordered Median Problem ........ 165

6.1. Extensions of the Single Facility Ordered Median
     Problem .................................................. 165
     6.1.1. Restricted Case ................................... 165
6.2. Extension to the Multifacility Case ...................... 169
     6.2.1. The Non-Interchangeable Multifacility Model ....... 170
     6.2.2. The Indistinguishable Multifacility Model ......... 172
6.3. The Single Facility OMP in Abstract Spaces ............... 174
     6.3.1. Preliminary Results ............................... 176
     6.3.2. Analysis of the Optimal Solution Set .............. 185
     6.3.3. The Convex OMP and the Single Facility 
            Location Problem in Normed Spaces ................. 189
6.4. Concluding Remarks ....................................... 193

Part III Ordered Median Location Problems on Networks

7. The Ordered Median Problem on Networks ..................... 197

7.1. Problem Statement ........................................ 197
7.2. Preliminary Results ...................................... 200
7.3. General Properties ....................................... 203

8. On Finite Dominating Sets for the Ordered Median
   Problem .................................................... 209

8.1. Introduction ............................................. 209
8.2. FDS for the Single Facility Ordered Median Problem ....... 210
8.3. Polynomial Size FDS for the Multifacility Ordered
     Median Problem ........................................... 214
     8.3.1. An FDS for the Multifacility Ordered Median
            Problem when a = λ1 = ... = λk ≠ λk+1 = ... =
            λм = b ............................................ 215
     8.3.2. An FDS for the Ordered 2-Median Problem with
            General Nonnegative λ-Weights ..................... 225
8.4. On the Exponential Cardinality of FDS for the
     Multifacility Facility Ordered Median Problem ............ 236
     8.4.1. Some Technical Results ............................ 239
     8.4.2. Main Results ...................................... 245

9. The Single Facility Ordered Median Problem on Networks ..... 249

9.1. The Single Facility OMP on Networks: Illustrative
     Examples ................................................. 250
9.2. The k-Centrum Single Facility Location Problem ........... 254
9.3. The General Single Facility Ordered Median Problem
     on Networks .............................................. 266
     9.3.1. Finding the Single Facility Ordered Median
            of a General Network .............................. 267
     9.3.2. Finding the Single Facility Ordered Median
            of a Tree ......................................... 269

10. The Multifacility Ordered Median Problem on Networks ...... 275

10.1.The Multifacility /c-Centrum Problem ..................... 275

10.2.The Ordered p-Median Problem with As-Vector
     fig.1 ...................................... 281
10.3.A Polynomial Algorithm for the Ordered p-Median Problem
     on Tree Networks with As-Vector, fig.1 ..... 283

11.Multicriteria Ordered Median Problems on Networks .......... 289

11.1.Introduction ............................................. 289
11.2.Examples and Remarks ..................................... 291
11.3.The Algorithm ............................................ 293
11.4.Point Comparison ......................................... 295
11.5.Segment Comparison ....................................... 296
11.6.Computing the Set of Efficient Points Using Linear
     Programming .............................................. 307

12.Extensions of the Ordered Median Problem on Networks ....... 311

12.1.Notation and Model Definitions ........................... 312
12.2.Tactical Subtree with Convex Ordered Median Objective .... 314
     12.2.1.Finding an Optimal Tactical Subedge ............... 314
     12.2.2.Finding an Optimal Tactical Continuous Subtree
            Containing a Given Node ........................... 315
12.3.Strategic Subtree with Convex Ordered Median Objective ... 317
     12.3.1.Finding an Optimal Strategic Subedge .............. 318
     12.3.2.Finding an Optimal Strategic Continuous
            Subtree Containing a Given Node ................... 318
     12.3.3.Submodularity of Convex Ordered Median
            Functions ......................................... 318
12.4.The Special Case of the Subtree k-Centrum Problem ........ 320
     12.4.1.Nestedness Property for the Strategic and
            Tactical Discrete k-Centrum Problems .............. 321
     12.4.2.A Dynamic Programming Algorithm for the
            Strategic Discrete Subtree k-Centrum Problem ...... 322
12.5.Solving the Strategic Continuous Subtree k-Centrum
     Problem .................................................. 325
12.6.Concluding Remarks ....................................... 327

Part IV The Discrete Ordered Median Location Problem

13.Introduction and Problem Statement ......................... 331

13.1.Definition of the Problem ................................ 332
13.2.A Quadratic Formulation for the Discrete OMP ............. 335
     13.2.1.Sorting as an Integer Linear Program (ILP) ........ 336
     13.2.2.Formulation of the Location-Allocation
            Subproblem ........................................ 337
     13.2.3.Quadratic Integer Programming Formulation
            for OMP ........................................... 339

14.Linearizations and Reformulations .......................... 341

14.1.Linearizations of (OMP) .................................. 341
     14.1.1.A First Linearization: (OMP1) ..................... 341
     14.1.2.A Linearization Using Less Variables: (OMP2) ...... 346
     14.1.3.Simplifying Further: (OMP3) ....................... 349
     14.1.4.Comparison Between (OMP2) and (OMP3) .............. 352
14.2.Reformulations ........................................... 354
     14.2.1.Improvements for (OMP1) ........................... 356
     14.2.2.Improvements for (OMP3) ........................... 362
     14.2.3.Improvements for (OMP2) ........................... 368
     14.2.4.Comparison Between (OMP2*) and (OMP3*) ............ 371
14.3.Computational Results .................................... 372

15.Solution Methods ........................................... 381

15.1.A Branch and Bound Method ................................ 381
     15.1.1.Combinatorial Lower Bounds ........................ 382
     15.1.2.Branching ......................................... 387
     15.1.3.Numerical Comparison of the Branching Rules ....... 389
     15.1.4.Computational Results ............................. 390
15.2.Two Heuristic Approaches for the OMP ..................... 393
     15.2.1.An Evolution Program for the OMP .................. 393
     15.2.2.A Variable Neighborhood Search for the OMP ........ 399
     15.2.3.Computational Results ............................. 407

16.Related Problems and Outlook ............................... 419
16.1 The Discrete OMP with fig.2 ............................. 419
     16.1.1.Problem Formulation ............................... 419
     16.1.2.Computational Results ............................. 421
16.2 Conclusions and Further Research ......................... 422

References .................................................... 423
Index ......................................................... 435


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:19:42 2019. Размер: 14,205 bytes.
Посещение N 2198 c 31.03.2009