Part I Tools for Nanoscience
1. Lithography and Etching Processes
D. Mailly, С. Vieu ........................................ 3
1.1. Definitions and General Considerations ..................... 3
1.2. Photoresists ............................................... 3
1.2.1. Example of Processing with a Polymer Resist ......... 4
1.2.2. Sensitivity and Contrast ............................ 5
1.2.3. Example of a Positive Resist ........................ 7
1.2.4. Transfer Stage ...................................... 8
1.3. Subtractive Pattern Transfer ............................... 9
1.3.1. Wet Etching ......................................... 9
1.3.2. Dry Etching ........................................ 11
1.3.3. Reactive Ion Etching ............................... 13
1.4. Additive Pattern Transfer ................................. 15
1.4.1. Lift-Off ........................................... 15
1.4.2. Electrolytic Growth ................................ 16
1.5. Lithography ............................................... 19
1.5.1. Overview of Lithographic Methods ................... 19
1.5.2. Proximity and Contact Photolithography ............. 20
1.5.3. Projection Photolithography ........................ 23
1.5.4. X-Ray Photolithography ............................. 26
1.5.5. Extreme UV Lithography ............................. 28
1.5.6. Electron Projection Lithography .................... 28
1.5.7. Ion Projection Lithography ......................... 29
1.5.8. Electron Beam Lithography .......................... 30
1.5.9. Focussed Ion Beam (FIB) Lithography ................ 35
1.5.10.Conclusion ......................................... 39
References ................................................ 40
2. Growth of Organised Nano-Objects on Prepatterned Surfaces
M. Hanbiicken, J. Eymery, S. Rousset ..................... 41
2.1. Physical Phenomena in Substrate Prepatterning
and Periodic Growth of Adsorbates ......................... 42
2.1.1. Surface Crystallography: Surface Energy and
Surface Stress ..................................... 42
2.1.2. Self-Organised Surfaces: Discontinuities
in the Surface Stress .............................. 47
2.1.3. 3D Growth: Energy Criterion and Competition
Between Bulk Elastic Energy and Surface Energy ..... 48
2.1.4. Role of the Chemical Potential as Driving Force
Behind Adsorbate Growth. Curvature Effect
and Elastic Stresses ............................... 52
2.2. Physical and Chemical Methods for Producing
Nano-Objects .............................................. 53
2.3. Growth of Nano-Objects on a Naturally Prepatterned
Surface Using Its Intrinsic Properties .................... 56
2.3.1. Growth of Self-Organised Surfaces .................. 56
2.3.2. Uses for Growth on Vicinal Surfaces ................ 57
2.4. Growth of Quantum Dots on a Prepatterned Surface
by Imposing a Controlled Artificial Pattern ............... 58
2.5. Growth of Nano-Objects on a Prepatterned Vicinal Surface
by Combining Natural and Artificial Patterning ............ 61
2.5.1. Prepatterning the Si(lll) Vicinal Surface .......... 61
2.5.2. Growth of Gold Nano-Objects on Prepatterned
Si(lll) ............................................ 63
2.6. Conclusion ................................................ 64
References ................................................ 65
3. Scanning Tunneling Microscopy
D. Stievenard ............................................ 69
3.1. Introduction .............................................. 69
3.1.1. General Principles ................................. 69
3.1.2. General Setup ...................................... 70
3.1.3. Tip Preparation .................................... 71
3.2. Tunnel Current ............................................ 72
3.2.1. Tunnel Effect Between Tip and Sample ............... 72
3.2.2. Tunnel Current: Tersoff-Hamann Theory .............. 73
3.2.3. Extending the Tersoff-Hamann Theory ................ 73
3.2.4. Resolution ......................................... 74
3.2.5. Contrast ........................................... 75
3.2.6. Measuring the Barrier Height ....................... 76
3.2.7. Examples ........................................... 77
3.3. STM Spectroscopy .......................................... 80
3.3.1. Elastic Current .................................... 80
3.3.2. Measuring the Band Gaps of III-V Semiconductors .... 82
3.3.3. Spectroscopy of Individual Quantum Dots ............ 82
3.3.4. Inelastic Tunnel Current ........................... 84
3.4. Tip-Sample Interaction .................................... 85
3.4.1. Manipulation Modes ................................. 85
3.4.2. Local Chemistry .................................... 87
3.5. Conclusion ................................................ 88
References ................................................ 89
4. Atomic Force Microscopy
C. Fretigny .............................................. 91
4.1. The Device ................................................ 91
4.2. The Various Imaging Modes ................................. 92
4.3. Image Resolution .......................................... 95
4.4. Contact Mode: Topography, Elasticity and Adhesion
Imaging ................................................... 98
4.4.1. Friction Mode ..................................... 100
4.5. Resonant Modes ........................................... 101
4.5.1. General Principles ................................ 101
4.5.2. Linear Resonant Mode .............................. 102
4.5.3. Nonlinear Resonant (Tapping) Mode ................. 103
4.6. Force Measurements ....................................... 107
4.6.1. Non-Contact Measurements .......................... 108
4.6.2. Elasticity and Adhesion Measurements on
a Single Molecule ................................. 108
4.7. Magnetic and Electrical Measurements ..................... 109
4.7.1. Magnetic Measurements ............................. 109
4.7.2. Electrical Measurements ........................... 109
4.8. Measuring Mechanical Properties .......................... 112
4.8.1. Nanoindentation ................................... 112
4.8.2. Measuring Contact Stiffness ....................... 112
4.8.3. Contact Resonance Frequency ....................... 113
4.8.4. Friction Forces ................................... 114
4.9. Applications in Nanotechnology ........................... 115
4.10.Conclusion ............................................... 118
References ............................................... 118
5. Near-Field Optics: From Experiment to Theory
C. Boccara, R. Carminati ................................ 121
5.1. Basic Ideas and the Nature of the Problem ................ 121
5.1.1. Resolution, Near Field and Far Field .............. 121
5.1.2. Brief History of Near-Field Methods ............... 122
5.1.3. Near-Field Optical Microscopy: For What
Purpose? .......................................... 123
5.2. Photon Scanning Tunneling Microscope (PSTM) .............. 123
5.2.1. Frustration of Evanescent Fields .................. 124
5.2.2. PSTM Probe in an Evanescent Field: Scattering
Model ............................................. 124
5.2.3. Applications of PSTM .............................. 126
5.3. Apertureless Near-Field Microscope ....................... 126
5.3.1. Nano-Antenna Radiating to the Far Field ........... 127
5.3.2. Source of Contrast: Scattering Sphere Model ....... 127
5.3.3. Sharp-Point Effect. Tip Resolution and
Efficiency ........................................ 129
5.3.4. Field Enhancement Near a Metal Tip ................ 129
5.3.5. Apertureless SNOM: Typical SNOM Setup ............. 131
5.4. Aperture SNOM ............................................ 133
5.4.1. Metal-Coated Fibre ................................ 133
5.4.2. Energy Transmission in a Tapered Metal-Coated
Fibre ............................................. 134
5.4.3. Applications of Aperture SNOM ..................... 136
5.5. Plane Wave Expansion. Diffraction Limit .................. 137
5.5.1. Propagation of a Beam in Vacuum ................... 138
5.5.2. Uncertainty Relations and Diffraction ............. 140
5.5.3. Diffraction Limit ................................. 140
5.6. Beyond the Diffraction Limit: Near Field and
Evanescent Waves ......................................... 142
5.6.1. Evanescent Waves. Length Scales ................... 142
5.6.2. Uncertainty Relations Revisited ................... 143
5.7. Electromagnetic Radiation. Near Field and Far Field ...... 143
5.7.1. Radiation from an Elementary Source
(Electric Dipole) ................................. 143
5.7.2. Far-Field Radiation. Diffraction Limit
Revisited ......................................... 144
5.7.3. Near-Field Radiation. Quasi-Static Limit .......... 145
5.7.4. Towards a Model ................................... 146
5.8. Dipole Emission Near a Nanostructure ..................... 146
5.8.1. Radiative Damping of Dipole Emission .............. 147
5.8.2. Free-Space Dipole Emission ........................ 148
5.8.3. Dipole Emission Near an Object .................... 149
5.8.4. Link with the Quantum Approach .................... 150
5.8.5. A Simple Example: Dipole Emission Near a Plane
Mirror ............................................ 151
5.8.6. Dipole Emission Near a Nanoparticle.
Radiative and Non-Radiative Coupling .............. 152
References ............................................... 155
6. Emerging Nanolithographic Methods
Y. Chen, A. Pepin ........................................ 157
6.1. Introduction ............................................. 157
6.2. Nanoimprint Lithography .................................. 158
6.3. Applications of Nanoimprint Lithography .................. 162
6.3.1. Microelectronics .................................. 162
6.3.2. Nanomagnetism ..................................... 163
6.3.3. Nano-Optics ....................................... 164
6.3.4. Chemistry and Biology ............................. 165
6.4. UV Nanoimprint Lithography (UV-NIL) ...................... 166
6.5. Nanoembossing ............................................ 167
6.6. Soft Lithography ......................................... 169
6.7. Near-Field Lithography ................................... 172
6.8. Conclusion ............................................... 174
References ............................................... 174
Part II Nanoscale Objects
7. Clusters and Colloids
A. Perez, P. Melinon, J. Lerme, P.-F. Brevet ............ 179
7.1. Equilibrium Shape ........................................ 180
7.1.1. Liquid-Drop Model ................................. 180
7.1.2. Wulff Polyhedron .................................. 182
7.1.3. Beyond the Wulff Polyhedron ....................... 183
7.1.4. Van der Waals Binding ............................. 189
7.1.5. Covalent Binding .................................. 190
7.1.6. Ionic Binding ..................................... 192
7.2. Characteristic Quantity: Radius .......................... 193
7.2.1. Thermodynamic Quantities: Melting Temperature ..... 193
7.2.2. Electronic Quantities ............................. 196
7.3. Characteristic Quantity: Fluctuations .................... 200
7.3.1. Melting Temperature ............................... 200
7.3.2. Kubo Model ........................................ 202
7.4. Specific Quantum Effects in Nanoscale Systems
and Collective Excitations ............................... 206
7.4.1. Electronic Shell Structure ........................ 207
7.4.2. Electronic Supershells ............................ 217
7.4.3. Optical Properties. Collective Excitations ........ 225
7.5. Preparation Methods ...................................... 241
7.5.1. Gas Phase Physical Methods ........................ 241
7.5.2. Liquid Phase Chemical Methods ..................... 246
7.6. Cluster or Colloid Assemblies ............................ 252
7.6.1. Assemblies of Metallic Clusters ................... 253
7.6.2. Deposition Techniques for Clusters and Colloids ... 254
7.6.3. Characteristic Mechanisms for the Formation
of Nanostructures by Cluster Assembly ............. 256
7.6.4. Examples of New Nanostructured Systems
Prepared by Cluster Deposition .................... 260
7.7. Conclusion and Prospects ................................. 266
References ............................................... 277
8. Fullerenes and Carbon Nanotubes
J.-P. Bourgoin, A. Loiseau, J.-F. Nierengarten ........... 279
8.1. Introduction ............................................. 279
8.2. Nanotubes and the Crystalline Forms of Carbon ............ 280
8.2.1. Diamond and Graphite .............................. 280
8.2.2. Discovery of Fullerenes ........................... 281
8.2.3. Discovery of Carbon Nanotubes ..................... 281
8.3. Fullerenes ............................................... 282
8.3.1. nStructure of Fullerenes .......................... 282
8.3.2. Production of Fullerenes .......................... 284
8.3.3. Physicochemical Properties of
Buckminsterfullerene .............................. 285
8.4. Carbon Nanotubes ......................................... 289
8.4.1. Crystal Structure of Nanotubes .................... 289
8.4.2. Electronic Structure of Carbon Nanotubes .......... 292
8.4.3. Self-Organisation of Nanotubes .................... 300
8.4.4. Chemical Varieties of Nanotubes ................... 301
8.4.5. Synthesis of Nanotubes ............................ 302
8.4.6. Growth Mechanism for Carbon Nanotubes ............. 305
8.4.7. Observation of Nanotubes .......................... 308
8.4.8. Properties of Nanotubes ........................... 311
8.4.9. From Science to Applications ...................... 313
8.5. Conclusion ............................................... 318
References ............................................... 321
9. Nanowires
J.-C. Labrune, F. Palmino ............................... 325
9.1. Fabrication of Nanowires ................................. 326
9.2. The Тор-Down Approach .................................... 327
9.2.1. Soft Lithography .................................. 327
9.2.2. Near-Field Lithography ............................ 328
9.3. The Bottom-Up Approach ................................... 332
9.3.1. Self-Assembly on a Surface ........................ 332
9.3.2. VLS Synthesis ..................................... 334
9.3.3. Use of Porous Matrices ............................ 335
9.4. Electrical Conduction in Nanowires ....................... 335
9.4.1. Electrical Contacts ............................... 336
9.4.2. Incoherent Transport .............................. 342
9.4.3. Atomic Chains and Molecules ....................... 342
9.5. Conclusion ............................................... 344
References ............................................... 344
10.Nano-Objects
J.-F. Nierengarten, J.-L. Gallani, N. Solladie .......... 349
10.1.Dendrimers ............................................... 349
10.1.1.Divergent Synthesis ............................... 350
10.1.2.Convergent Synthesis .............................. 352
10.2.Supramolecules ........................................... 353
10.2.1.Self-Assembly by 3D Template Effect
Induced by a Metal Cation ......................... 354
10.2.2.Self-Assembly by Hydrogen Bonding ................. 359
10.2.3.Self-Assembly by Hydrophobic Interactions,
π-Interactions and Charge Transfer
Interactions ...................................... 363
10.2.4.Molecular Machines ................................ 366
10.3.Polymolecular Assemblies ................................. 368
10.3.1.Self-Assembly in the Bulk ......................... 369
10.3.2.Self-Assembly on Surfaces ......................... 372
References ............................................... 378
Part III Properties and Applications
11.Ultimate Electronics
S. Galdin-Retailleau, A. Bournel, P. Dollfus ............ 383
11.1.CMOS Technology .......................................... 386
11.2.MOSFET Scaling ........................................... 392
11.2.1.Basic Principles .................................. 392
11.2.2.Short Channel Effects ............................. 392
11.2.3.Scaling Rules ..................................... 393
11.2.4.State of the Art: ITRS Roadmap .................... 395
11.2.5.Interconnects ..................................... 398
11.3.NanoMOS Devices .......................................... 400
11.3.1.Specific Problems ................................. 400
11.3.2.Alternatives to Conventional MOSFET Devices ....... 408
11.4.Conclusion ............................................... 412
References ............................................... 413
12.Alternative Electronics
J.-N. Patillon, D. Mailly ............................... 417
12.1.Characteristic Length Scales for Nanoscopic Components ... 418
12.2.Single-Electron Devices (SED) ............................ 419
12.2.1.Basic Ideas ....................................... 419
12.2.2.Transport by Coulomb Blockade ..................... 420
12.2.3.Double Tunnel Junction ............................ 425
12.2.4.Single-Electron Transistor ........................ 427
12.3.Quantum Interference in Nanostructures ................... 428
12.3.1.Introduction ...................................... 428
12.3.2.Conductance and Transmission.The Landauer
Formula ........................................... 430
12.3.3.Calculating the Correction ........................ 433
12.3.4.Effect of Magnetic Fields ......................... 434
12.3.5.Universal Conductance Fluctuations ................ 435
12.3.6.Cutoffs ........................................... 437
12.4.An Example of Interference: Aharonov-Bohm Effect ......... 437
12.5.Superconducting Nanoelectronics: RSFQ Logic .............. 440
12.5.1.Introduction ...................................... 440
12.5.2.Superconducting Logic Components .................. 440
12.5.3.Structure and Performance of RSFQ Components ...... 442
References ............................................... 446
13.Molecular Electronics
J.P. Bourgoin, D. Vuillaume, M. Goffman, A. Filoramo .... 447
13.1.Basic Building Blocks: Choice, Wealth, Complexity ........ 448
13.2.A Little History ......................................... 449
13.3.Molecular Components ..................................... 450
13.3.1.Electrodes and Contacts ........................... 450
13.3.2.Relationship Between Molecular Structure and
Properties ........................................ 456
13.3.3.Functions ......................................... 469
13.4.Components Based on Nanotubes ............................ 479
13.4.1.Field-Effect Transistors .......................... 479
13.4.2.Single-Electron Transistors (SET) ................. 486
13.5.From Components to Circuits .............................. 490
13.5.1.Fabrication Techniques ............................ 490
13.5.2.Circuit Architecture .............................. 497
13.6.Conclusion ............................................... 498
References ............................................... 499
14.Nanomagnetism and Spin Electronics
C. Chappert, A. Barthelemy .............................. 503
14.1.Nanomagnetism ............................................ 504
14.1.1.Vacuum Magnetostatics ............................. 504
14.1.2.Magnetism in Matter: Fundamental Relations ........ 505
14.1.3.Magnetism in Matter: Continuum Approximation ...... 511
14.1.4.Novel Magnetic Effects on the Nanoscale ........... 525
14.1.5.Magnetisation Dynamics in Magnetic
Nanostructures .................................... 540
14.2.Spin Electronics ......................................... 552
14.2.1.Description ....................................... 552
14.2.2.Origins and Mechanisms of Spin Electronics ........ 559
14.2.3.Magnetoresistance of Tunnel Junctions ............. 568
References ............................................... 578
15.Information Storage
D. Fraboulet, Y. Samson ................................. 583
15.1.Mass Memories ............................................ 583
15.1.1.Mass Memories: The Hard Disk ...................... 585
15.1.2.Beyond the Hard Disk.Local Probe Techniques ....... 593
15.2.Matrix Memories .......................................... 595
15.2.1.General Principles of Matrix Storage .............. 595
15.2.2.Difficulties in Reducing Memory Cells to
Nanoscale Sizes ................................... 599
15.2.3.Matrix Memory Technology in Current Use ........... 600
15.2.4.Memory Concepts Under Development ................. 606
15.3.Conclusion ............................................... 614
References ............................................... 618
16.Optronics
J.-L. Pautrat, J.-M. Gerard, E. Bustarret,
D. Cassagne, E. Hadji, C. Seassal ....................... 619
16.1.Surface Plasmons and Nanoscale Optics .................... 619
16.1.1.Introduction ...................................... 619
16.1.2.What Is a Plasmon? ................................ 620
16.1.3.Dispersion Relations, Coupling with Light,
and Applications .................................. 622
16.1.4.Optical Transmission Through Subwavelength
Apertures ......................................... 627
16.1.5.Metal Nanoparticles ............................... 629
16.1.6.How Far Can Plasmons Take Us? ..................... 633
16.2.Semiconductor Quantum Dots ............................... 634
16.2.1.Semiconductor Lasers: From Quantum Wells
to Quantum Dots ................................... 634
16.2.2.Single Quantum Dots ............................... 640
16.3.Photonic Crystals and Microcavities ...................... 646
16.3.1.Introduction ...................................... 646
16.3.2.Periodic Structures ............................... 646
16.3.3.Structures Without Defects. Exploiting the
Allowed Bands in Photonic Crystals ................ 653
16.3.4.Structures with Defects ........................... 656
16.3.5.Conclusion and Prospects .......................... 661
References ............................................... 662
17.Nanophotonics for Biology
J.Zyss, S.Brasselet ..................................... 665
17.2.Molecules, Supramolecular Assemblies, and
Nanoparticles ............................................ 686
17.2.1.Coupling Between Nanoparticles and Biomolecules ... 686
17.2.2.Luminescent Nanostructures Based on
Semiconductors and Metals ......................... 695
17.2.3.Molecular Engineering for Biophotonics ............ 698
17.3.Nanophotonic Instrumentation for Biology ................. 707
17.3.1.Optical Detection of Single Molecules by
Fluorescence ...................................... 707
17.3.2.Multiphoton and Nonlinear Microscopy .............. 731
17.3.3.Mechanical Properties of Single Biomolecules ...... 737
17.4.Conclusion ............................................... 743
References ............................................... 746
18.Numerical Simulation
X. Blase, С. Delerue .................................... 749
18.1.Structural Properties .................................... 750
18.1.1.Interatomic Potentials and Forces ................. 750
18.1.2.Potential Energy Surface .......................... 752
18.1.3.Classical Molecular Dynamics ...................... 753
18.1.4.Monte Carlo Methods ............................... 755
18.2.Electron Properties ...................................... 757
18.2.1.Basic Results from Quantum Mechanics .............. 757
18.2.2.Semi-Empirical Approaches to Electron Structure ... 759
18.2.3.Ab Initio Methods ................................. 766
18.2.4.Ab Initio Calculation of Interatomic Forces ....... 771
18.2.5.Using Electron Wave Functions and Eigenvalues ..... 773
18.3.Conclusion ............................................... 773
References ............................................... 774
19.Computer Architectures for Nanotechnology: Towards
Nanocomputing
C. Gamrat ............................................... 777
19.1.Introduction ............................................. 777
19.2.Computer Architecture and Basic Functions ................ 779
19.2.1.Typical Architecture of a Computer ................ 779
19.2.2.Memory ............................................ 780
19.2.3.Interconnects ..................................... 782
19.2.4.Operators ......................................... 782
19.2.5.Technological Considerations ...................... 783
19.2.6.Nanomemories, Nano-operators, Nanoconnections ..... 785
19.3.Some Ideas for a New Architecture ........................ 786
19.3.1.Calculating with Memory Alone ..................... 786
19.3.2.Reconfigurable Computer Architectures ............. 788
19.3.3.Cellular Automata ................................. 789
19.3.4.Neural Networks ................................... 791
19.4.Computer Environment ..................................... 794
19.4.1.Information Coding ................................ 794
19.4.2.Defect Tolerance .................................. 794
19.5.Prospects ................................................ 798
References ............................................... 799
Index ......................................................... 801
|