Dedication ...................................................... v
Table of Contents ............................................. vii
Preface ...................................................... xiii
Foreword ....................................................... xv
Acknowledgments .............................................. xvii
Part I. Fundamental of two-phase flow
1. Introduction ................................................. 1
1.1. Relevance of the problem ................................... 1
1.2. Characteristic of multiphase flow .......................... 3
1.3. Classification of two-phase flow ........................... 5
1.4. Outline of the book ....................................... 10
2. Local Instant Formulation ................................... 11
1.1. Single-phase flow conservation equations .................. 13
1.1.1. General balance equations .......................... 13
1.1.2. Conservation equation .............................. 15
1.1.3. Entropy inequality and principle of
constitutive law ................................... 18
1.1.4. Constitutive equations ............................. 20
1.2. Interfacial balance and boundary conditions ............... 24
1.2.1. Interfacial balance (Jump condition) ............... 24
1.2.2. Boundary conditions at interface ................... 32
1.2.3. Simplified boundary condition ...................... 38
1.2.4. External boundary condition and contact angle ...... 43
1.3. Application of local instant formulation to two-phase
flow problems ............................................. 46
1.3.1. Drag force acting on a spherical particle
in a very slow stream .............................. 46
1.3.2. Kelvin-Helmholtz instability ....................... 48
1.3.3. Rayleigh-Taylor instability ........................ 52
Part II. Two-phase field equations based on time average
3. Various Methods of Averaging ................................ 55
1.1. Purpose of averaging ...................................... 55
1.2. Classification of averaging ............................... 58
1.3. Various averaging in connection with two-phase
flow analysis ............................................. 61
4. Basic Relations in Time Averaging ........................... 67
1.1. Time domain and definition of functions ................... 68
1.2. Local time fraction - Local void fraction ................. 72
1.3. Time average and weighted mean values ..................... 73
1.4. Time average of derivatives ............................... 78
1.5. Concentrations and mixture properties ..................... 82
1.6. Velocity field ............................................ 86
1.7. Fundamental identity ...................................... 89
5. Time Averaged Balance Equation .............................. 93
1.1. General balance equation .................................. 93
1.2. Two-fluid model field equations ........................... 98
1.3. Diffusion (mixture) model field equations ................ 103
1.4. Singular case of vni=0 (quasi-stationary interface) ....... 108
1.5. Macroscopic jump conditions .............................. 110
1.6. Summary of macroscopic field equations and jump
conditions ............................................... 113
1.7. Alternative form of turbulent heat flux .................. 114
6. Connection to Other Statistical Averages ................... 119
1.1. Eulerian statistical average (ensemble average) .......... 119
1.2. Boltzmann statistical average ............................ 120
Part III. Three-dimensional model based on time average
7. Kinematics of Averaged Fields .............................. 129
1.1. Convective coordinates and convective derivatives ........ 129
1.2. Streamline ............................................... 132
1.3. Conservation of mass ..................................... 133
1.4. Dilatation ............................................... 140
8. Interfacial Transport ...................................... 143
1.1. Interfacial mass transfer ................................ 143
1.2. Interfacial momentum transfer ............................ 145
1.3. Interfacial energy transfer .............................. 149
9. Two-fluid Model ............................................ 155
1.1. Two-fluid model field equations .......................... 156
1.2. Two-fluid model constitutive laws ........................ 169
1.2.1. Entropy inequality ................................ 169
1.2.2. Equation of state ................................. 172
1.2.3. Determinism ....................................... 177
1.2.4. Average molecular diffusion fluxes ................ 179
1.2.5. Turbulent fluxes .................................. 181
1.2.6. Interfacial transfer constitutive laws ............ 186
1.3. Two-fluid model formulation .............................. 198
1.4. Various special cases .................................... 205
10. Interfacial Area Transport ................................ 217
1.1. Three-dimensional interfacial area transport equation .... 218
1.1.1. Number transport equation ......................... 219
1.1.2. Volume transport equation ......................... 220
1.1.3. Interfacial area transport equation ............... 222
1.2. One-group interfacial area transport equation ............ 227
1.3. Two-group interfacial area transport equation ............ 228
1.3.1. Two-group particle number transport equation ...... 229
1.3.2. Two-group void fraction transport equation ........ 230
1.3.3. Two-group interfacial area transport equation ..... 234
1.3.4. Constitutive relations ............................ 240
11. Constitutive Modeling of Interfacial Area Transport ....... 243
1.1. Modified two-fluid model for the two-group interfacial
area transport equation .................................. 245
1.1.1. Conventional two-fluid model ...................... 245
1.1.2. Two-group void fraction and interfacial area
transport equations ............................... 246
1.1.3. Modified two-fluid model .......................... 248
1.1.4. Modeling of two gas velocity fields ............... 253
1.2. Modeling of source and sink terms in one-group
interfacial area transport equation ...................... 257
1.2.1. Source and sink terms modeled
by Wu et al. (1998) ............................... 259
1.2.2. Source and sink terms modeled by Hibiki
and Ishii (2000a) ................................. 267
1.2.1. Thermo-Fluid Dynamics of Two-Phase Flow
1.2.3. Source and sink terms modeled by Hibiki et al.
(2001b) ........................................... 275
1.3. Modelmg of source and sink terms in two-group
interfacial Area Transport Equation ...................... 276
1.3.1. Source and sink terms modeled by Hibiki and
Ishii (2000b) ..................................... 277
1.3.2. Source and sink terms modeled by Fu and Ishii
(2002a) ........................................... 281
1.3.3. Source and sink terms modeled by Sun et al.
(2004a) ............................................ 290
12. Hydrodynamic Constitutive Relations for Interfacial
Transfer .................................................. 301
1.1. Transient forces in multiparticle system ................. 303
1.2. Drag force in multiparticle system ....................... 308
1.2.1. Single-particle drag coefficient .................. 309
1.2.2. Drag coefficient for dispersed two-phase flow ..... 315
1.3. Other forces ............................................. 329
1.3.1. Lift Force ........................................ 331
1.3.2. Wall-lift (wall-lubrication) force ................ 335
1.3.3. Turbulent dispersion force ........................ 336
1.4. Turbulence in multiparticle system ....................... 336
13. Drift-flux Model .......................................... 345
1.1. Drift-flux model field equations ......................... 346
1.2. Drift-flux (or mixture) model constitutive laws .......... 355
1.3. Drift-flux (or mixture) model formulation ................ 372
1.3.1. Drift-flux model .................................. 372
1.3.2. Scaling parameters ................................ 373
1.3.3. Homogeneous flow model ............................ 376
1.3.4. Density propagation model ......................... 378
Part IV. One-dimensional model based on time average
14. One-dimensional Drift-flux Model .......................... 381
1.1. Area average of three-dimensional drift-flux model ....... 382
1.2. One-dimensional drift velocity ........................... 387
1.2.1. Dispersed two-phase flow .......................... 387
1.2.2. Annular two-phase Flow ............................ 398
1.2.3. Annular mist Flow ................................. 403
1.3. Covariance of convective flux ............................ 406
1.4. One-dimensional drift-flux correlations for various
flow conditions .......................................... 411
1.4.1. Constitutive equations for upward bubbly flow ..... 412
1.4.2. Constitutive equations for upward adiabatic
annulus and internally heated annulus ............. 412
1.4.3. Constitutive equations for downward two-phase
flow .............................................. 413
1.4.4. Constitutive equations for bubbling or boiling
pool systems ...................................... 413
1.4.5. Constitutive equations for large diameter pipe
systems ........................................... 414
1.4.6. Constitutive equations at reduced gravity
conditions ........................................ 415
15. One-dimensional Two-fluid Model ........................... 419
1.1. Area average of three-dimensional two-fluid model ........ 420
1.2. Special consideration for one-dimensional constitutive
relations ................................................ 423
1.2.1. Covariance effect in field equations .............. 423
1.2.2. Effect of phase distribution on constitutive
relations ......................................... 426
1.2.3. Interfacial shear term ............................ 428
References .................................................... 431
Nomenclature .................................................. 441
Index ......................................................... 457
|