Harville D. Matrix algebra from a statistician's perspective (New York, 2008). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаHarville D. Matrix algebra from a statistician's perspective. - New York: Springer, 2008. - xvi, 634 p. - ISBN 978-0-387-78356-7
 

Место хранения: 01 | ГПНТБ СО РАН | Новосибирск

Оглавление / Contents
 
Preface ......................................................... v
1.  Matrices .................................................... 1
    1.1.  Basic Terminology ..................................... 1
    1.2.  Basic Operations ...................................... 2
    1.3.  Some Basic Types of Matrices .......................... 5
    Exercises .................................................. 10
2.  Submatrices and Partitioned Matrices ....................... 13
    2.1.  Some Terminology and Basic Results ................... 13
    2.2.  Scalar Multiples, Transposes, Sums, and Products
          of Partitioned Matrices .............................. 17
    2.3.  Some Results on the Product of a Matrix and
          a Column Vector ...................................... 19
    2.4.  Expansion of a Matrix in Terms of Its Rows,
          Columns, or Elements ................................. 20
    Exercises .................................................. 21
3.  Linear Dependence and Independence ......................... 23
    3.1.  Definitions .......................................... 23
    3.2.  Some Basic Results ................................... 23
    Exercises .................................................. 25
4.  Linear Spaces: Row and Column Spaces ....................... 27
    4.1.  Some Definitions, Notation, and Basic
          Relationships and Properties ......................... 27
    4.2.  Subspaces ............................................ 29
    4.3.  Bases ................................................ 31
    4.4.  Rank of a Matrix ..................................... 36
    4.5.  Some Basic Results on Partitioned Matrices and
          on Sums of Matrices .................................. 41
    Exercises .................................................. 46
5.  Trace of a (Square) Matrix ................................. 49
    5.1.  Definition and Basic Properties ...................... 49
    5.2.  Trace of a Product ................................... 50
    5.3.  Some Equivalent Conditions ........................... 52
    Exercises .................................................. 52
6.  Geometrical Considerations ................................. 55
    6.1.  Definitions: Norm, Distance, Angle, Inner
          Product, and Orthogonality ........................... 55
    6.2.  Orthogonal and Orthonormal Sets ...................... 61
    6.3.  Schwarz Inequality ................................... 62
    6.4.  Orthonormal Bases .................................... 63
    Exercises .................................................. 68
7.  Linear Systems: Consistency and Compatibility .............. 71
    7.1.  Some Basic Terminology ............................... 71
    7.2.  Consistency .......................................... 72
    7.3.  Compatibility ........................................ 73
    7.4.  Linear Systems of the Form A'AX = A'B ................ 74
    Exercise ................................................... 77
8.  Inverse Matrices ........................................... 79
    8.1.  Some Definitions and Basic Results ................... 79
    8.2.  Properties of Inverse Matrices ....................... 81
    8.3.  Premultiplication or Postmultiplication by
          a Matrix of Full Column or Row Rank .................. 82
    8.4.  Orthogonal Matrices .................................. 84
    8.5.  Some Basic Results on the Ranks and Inverses of
          Partitioned Matrices ................................. 88
    Exercises ................................................. 103
9.  Generalized Inverses ...................................... 107
    9.1.  Definition, Existence, and a Connection to the
          Solution of Linear Systems .......................... 107
    9.2.  Some Alternative Characterizations .................. 109
    9.3.  Some Elementary Properties .......................... 117
    9.4.  Invariance to the Choice of a Generalized Inverse ... 119
    9.5.  A Necessary and Sufficient Condition for the
          Consistency of a Linear System ...................... 120
    9.6.  Some Results on the Ranks and Generalized 
          Inverses of Partitioned Matrices .................... 121
    9.7.  Extension of Some Results on Systems of the
          Form AX = В to Systems of the Form AXC = В .......... 126
    Exercises ................................................. 126
10. Idempotent Matrices ....................................... 133
    10.1. Definition and Some Basic Properties ................ 133
    10.2. Some Basic Results .................................. 134
    Exercises ................................................. 136
11. Linear Systems: Solutions ................................. 139
    11.1. Some Terminology, Notation, and Basic Results ....... 139
    11.2. General Form of a Solution .......................... 140
    11.3. Number of Solutions ................................. 142
    11.4. A Basic Result on Null Spaces ....................... 144
    11.5. An Alternative Expression for the General Form 
          of a Solution ....................................... 144
    11.6. Equivalent Linear Systems ........................... 145
    11.7. Null and Column Spaces of Idempotent Matrices ....... 146
    11.8. Linear Systems With Nonsingular Triangular or
          Block-Triangular Coefficient Matrices ............... 146
    11.9. A Computational Approach ............................ 149
    11.10.Linear Combinations of the Unknowns ................. 150
    11.11.Absorption .......................................... 152
    11.12.Extensions to Systems of the Form AXC = В ........... 157
    Exercises ................................................. 158
12. Projections and Projection Matrices ....................... 161
    12.1. Some General Results, Terminology, and Notation ..... 161
    12.2. Projection of a Column Vector ....................... 163
    12.3. Projection Matrices ................................. 166
    12.4. Least Squares Problem ............................... 170
    12.5. Orthogonal Complements .............................. 172
    Exercises ................................................. 177
13. Determinants .............................................. 179
    13.1. Some Definitions, Notation, and Special Cases ....... 179
    13.2. Some Basic Properties of Determinants ............... 183
    13.3. Partitioned Matrices, Products of Matrices, 
          and Inverse Matrices ................................ 187
    13.4. A Computational Approach ............................ 191
    13.5. Cofactors ........................................... 191
    13.6. Vandermonde Matrices ................................ 195
    13.7. Some Results on the Determinant of the Sum of
          Two Matrices ........................................ 197
    13.8. Laplace's Theorem and the Binet-Cauchy Formula ...... 200
    Exercises ................................................. 205
14. Linear, Bilinear, and Quadratic Forms ..................... 209
    14.1. Some Terminology and Basic Results .................. 209
    14.2. Nonnegative Definite Quadratic Forms and Matrices ... 212
    14.3. Decomposition of Symmetric and Symmetric
          Nonnegative Definite Matrices ....................... 218
    14.4. Generalized Inverses of Symmetric Nonnegative
          Definite Matrices ................................... 222
    14.5. LDU, U'DU, and Cholesky Decompositions .............. 223
    14.6. Skew-Symmetric Matrices ............................. 239
    14.7. Trace of a Nonnegative Definite Matrix .............. 240
    14.8. Partitioned Nonnegative Definite Matrices ........... 243
    14.9. Some Results on Determinants ........................ 247
    14.10.Geometrical Considerations .......................... 255
    14.11.Some Results on Ranks and Row and Column Spaces 
          and on Linear Systems ............................... 259
    14.12.Projections, Projection Matrices, and Orthogonal
          Complements ......................................... 260
          Exercises ........................................... 277
15. Matrix Differentiation .................................... 289
    15.1. Definitions, Notation, and Other Preliminaries ...... 290
    15.2. Differentiation of (Scalar-Valued) Functions:
          Some Elementary Results ............................. 296
    15.3. Differentiation of Linear and Quadratic Forms ....... 298
    15.4. Differentiation of Matrix Sums, Products, and
          Transposes (and of Matrices of Constants) ........... 300
    15.5. Differentiation of a Vector or (Unrestricted
          or Symmetric) Matrix With Respect to Its Elements ... 303
    15.6. Differentiation of a Trace of a Matrix .............. 304
    15.7. The Chain Rule ...................................... 306
    15.8. First-Order Partial Derivatives of Determinants
          and Inverse and Adjoint Matrices .................... 308
    15.9. Second-Order Partial Derivatives of Determinants
          and Inverse Matrices ................................ 312
    15.10.Differentiation of Generalized Inverses ............. 314
    15.11.Differentiation of Projection Matrices .............. 319
    15.12.Evaluation of Some Multiple Integrals ............... 324
    Exercises ................................................. 327
    Bibliographic and Supplementary Notes ..................... 335
16. Kronecker Products and the Vec and Vech Operators ......... 337
    16.1. The Kronecker Product of Two or More Matrices:
          Definition and Some Basic Properties ................ 337
    16.2. The Vec Operator: Definition and Some Basic
          Properties .......................................... 343
    16.3. Vec-Permutation Matrix .............................. 347
    16.4. The Vech Operator ................................... 354
    16.5. Reformulation of a Linear System .................... 367
    16.6. Some Results on Jacobian Matrices ................... 368
    Exercises ................................................. 371
    Bibliographic and Supplementary Notes ..................... 377
17. Intersections and Sums of Subspaces ....................... 379
    17.1. Definitions and Some Basic Properties ............... 379
    17.2. Some Results on Row and Column Spaces and on
          the Ranks of Partitioned Matrices ................... 385
    17.3. Some Results on Linear Systems and on Generalized
          Inverses of Partitioned Matrices .................... 392
    17.4. Subspaces: Sum of Their Dimensions Versus
          Dimension of Their Sum .............................. 396
    17.5. Some Results on the Rank of a Product of Matrices ... 398
    17.6. Projections Along a Subspace ........................ 402
    17.7. Some Further Results on the Essential 
          Disjointness and Orthogonality of Subspaces
          and on Projections and Projection Matrices .......... 409
    Exercises ................................................. 411
    Bibliographic and Supplementary Notes ..................... 417
18. Sums (and Differences) of Matrices ........................ 419
    18.1. Some Results on Determinants ........................ 419
    18.2. Some Results on Inverses and Generalized
          Inverses and on Linear Systems ...................... 423
    18.3. Some Results on Positive (and Nonnegative)
          Definiteness ........................................ 437
    18.4. Some Results on Idempotency ......................... 439
    18.5. Some Results on Ranks ............................... 444
    Exercises ................................................. 450
    Bibliographic and Supplementary Notes ..................... 458
19. Minimization of a Second-Degree Polynomial
    (in n Variables) Subject to Linear Constraints ............ 459
    19.1. Unconstrained Minimization .......................... 460
    19.2. Constrained Minimization ............................ 463
    19.3. Explicit Expressions for Solutions to the
          Constrained Minimization Problem .................... 468
    19.4. Some Results on Generalized Inverses of
          Partitioned Matrices ................................ 476
    19.5. Some Additional Results on the Form of
          Solutions to the Constrained Minimization Problem ... 483
    19.6. Transformation of the Constrained Minimization
          Problem to an Unconstrained Minimization Problem .... 489
    19.7. The Effect of Constraints on the Generalized 
          Least Squares Problem ............................... 491
    Exercises ................................................. 492
    Bibliographic and Supplementary Notes ..................... 495
20 The Moore-Penrose Inverse .................................. 497
    20.1. Definition, Existence, and Uniqueness
          (of the Moore-Penrose Inverse) ...................... 497
    20.2. Some Special Cases .................................. 499
    20.3. Special Types of Generalized Inverses ............... 500
    20.4. Some Alternative Representations and
          Characterizations ................................... 507
    20.5. Some Basic Properties and Relationships ............. 508
    20.6. Minimum Norm Solution to the Least Squares
          Problem ............................................. 512
    20.7. Expression of the Moore-Penrose Inverse
          as a Limit .......................................... 512
    20.8. Differentiation of the Moore-Penrose Inverse ........ 514
    Exercises ................................................. 517
    Bibliographic and Supplementary Notes ..................... 519
21. Eigenvalues and Eigenvectors .............................. 521
    21.1. Definitions, Terminology, and Some Basic Results .... 522
    21.2. Eigenvalues of Triangular or Block-Triangular
          Matrices and of Diagonal or Block-Diagonal
          Matrices ............................................ 528
    21.3. Similar Matrices .................................... 530
    21.4. Linear Independence of Eigenvectors ................. 534
    21.5. Diagonalization ..................................... 537
    21.6. Expressions for the Trace and Determinant
          of a Matrix ......................................... 545
    21.7. Some Results on the Moore-Penrose Inverse
          of a Symmetric Matrix ............................... 546
    21.8. Eigenvalues of Orthogonal, Idempotent, and
          Nonnegative Definite Matrices ....................... 548
    21.9. Square Root of a Symmetric Nonnegative
          Definite Matrix ..................................... 550
    21.10.Some Relationships .................................. 551
    21.11.Eigenvalues and Eigenvectors of Kronecker
          Products ............................................ 554
    21.12.Singular Value Decomposition ........................ 556
    21.13.Simultaneous Diagonalization ........................ 566
    21.14.Generalized Eigenvalue Problem ...................... 569
    21.15.Differentiation of Eigenvalues and Eigenvectors ..... 571
    21.16.An Equivalence (Involving Determinants and
          Polynomials) ........................................ 574
    Appendix: Some Properties of Polynomials .................. 580
    Exercises ................................................. 582
    Bibliographic and Supplementary Notes ..................... 588
22. Linear Transformations .................................... 589
    22.1. Some Definitions, Terminology, and Basic Results .... 589
    22.2. Scalar Multiples, Sums, and Products of Linear
          Transformations ..................................... 595
    22.3. Inverse Transformations and Isomorphic Linear
          Spaces .............................................. 598
    22.4. Matrix Representation of a Linear Transformation .... 601
    22.5. Terminology and Properties Shared by a Linear
          Transformation and Its Matrix Representation ........ 609
    22.6. Linear Functionals and Dual Transformations ......... 612
    Exercises ................................................. 616
    References ................................................ 621

Index ......................................................... 625


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:19:40 2019. Размер: 20,180 bytes.
Посещение N 2394 c 24.03.2009