Semiconductor nanostructures (Вerlin; Heidelberg, 2008). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаSemiconductor nanostructures / ed. by Bimberg D. - Вerlin; Heidelberg: Springer, 2008. - xxi, 357 p. - (Nanoscience and technology). - ISBN 987-3-540-77898-1
 

Оглавление / Contents
 
Preface ......................................................... v

List of Contributors ......................................... xvii

1  Thermodynamics and Kinetics of Quantum Dot Growth
     Vitaly Shchukin, Eckehard Schöll and Peter Kratzer ......... 1
1.1. Introduction ............................................... 2
     1.1.1. Length and Time Scales .............................. 3
     1.1.2. Multiscale Approach to the Modeling of 
            Nanostructures ...................................... 4
1.2. Atomistic Aspects of Growth ................................ 5
     1.2.1. Diffusion of Ga Atoms on GaAs(OOl) .................. 5
     1.2.2. Energetics of As2 Incorporation During 
            Growth .............................................. 5
     1.2.3. Kinetic Monte Carlo Simulation of GaAs 
            Homoepitaxy ......................................... 6
     1.2.4. Wetting Layer Evolution ............................. 9
1.3. Size and Shapes of Individual Quantum Dots ................ 11
     1.3.1. Hybrid Approach to Calculation of the Equilibrium
            Shape of Individual Quantum Dots ................... 11
     1.3.2. Role of High-Index Facets in the Shape of Quantum 
            Dots ............................................... 13
     1.3.3. Shape Transition During Quantum Dot Growth ......... 14
     1.3.4. Constraint Equilibrium of Quantum Dots with a 
            Wetting Layer ...................................... 15
1.4. Thermodynamics and Kinetics of Quantum Dot Ensembles ...... 19
     1.4.1. Equilibrium Volume of Strained Islands versus 
            Ostwald Ripening ................................... 19
     1.4.2. Crossover from Kinetically Controlled to   
            Thermodynamically Controlled Growth of Quantum 
            Dots ............................................... 22
     1.4.3. Tunable Metastability of Quantum Dot Arrays ........ 25
     1.4.4. Evolution Mechanisms in Dense Arrays of 
            Elastically Interacting Quantum Dots ............... 27
1.5. Quantum Dot Stacks ........................................ 29
     1.5.1. Transition between Vertically Correlated and 
            Vertically Anticorrelated Quantum Dot Growth ....... 29
     1.5.2. Finite Size Effect: Abrupt Transitions between 
            Correlated and Anticorrelated Growth ............... 31
     1.5.3. Reduction of a Size of a Critical Nucleus in the 
            Second Quantum Dot Layer ........................... 32
1.6. Summary and Outlook ....................................... 34
References ..................................................... 35

2  Control of Self-Organized In(Ga)As/GaAs Quantum Dot Growth
     Udo W. Pohl and André Strittmatter ........................ 41
2.1. Introduction .............................................. 41
2.2. Evolution and Strain Engineering of InGaAs/GaAs Quantum
     Dots ...................................................... 42
     2.2.1. Evolution of InGaAs Dots ........................... 42
     2.2.2. Engineering of Single and Stacked InGaAs QD 
            Layers ............................................. 46
2.3. Growth Control of Equally Shaped InAs/GaAs Quantum Dots ... 50
     2.3.1. Formation of Self-Similar Dots with a Multimodal 
            Size Distribution .................................. 51
     2.3.2. Kinetic Description of Multimodal Dot-Ensemble 
            Formation .......................................... 54
2.4. Epitaxy of GaSb/GaAs Quantum Dots ......................... 56
     2.4.1. Onset and Dynamics of GaSb/GaAs Quantum-Dot 
            Formation .......................................... 56
     2.4.2. Structure of GaSb/GaAs Quantum Dots ................ 58
2.5. Device Applications of InGaAs Quantum Dots ................ 60
     2.5.1. Edge-Emitting Lasers ............................... 60
     2.5.2. Surface-Emitting Lasers ............................ 61
2.6. Conclusion ................................................ 62
References ..................................................... 63

3  In-Situ Monitoring for Nano-Structure Growth in MOVPE
     Markus Pristovsek and Wolfgang Richter .................... 67
3.1. Introduction .............................................. 67
3.2. Reflectance ............................................... 69
3.3. Reflectance Anisotropy Spectroscopy (RAS) ................. 71
     3.3.1. RAS Spectra and Surface Reconstruction ............. 72
     3.3.2. Monolayer Oscillations ............................. 74
     3.3.3. Monitoring of Carrier Concentration ................ 79
3.4. Scanning Tunneling Microscopy (STM) ....................... 82
3.5. Conclusion ................................................ 84
References ..................................................... 85

4  Bottom-up Approach to the Nanopatterning of Si(001)
     R. Koch ................................................... 87
4.1. Quantum Dot Growth on Semiconductor Templates ............. 87
4.2. (2 x n) Reconstruction of Si(001) ......................... 88
4.3. Monte Carlo Simulations on the (2 x n) Formation .......... 90
4.4. Scanning Tunneling Microscopy Results ..................... 92
4.5. Summary and Outlook ....................................... 94
References ..................................................... 95

5  Structural Characterisation of Quantum Dots by X-Ray 
   Diffraction and ТЕМ
     R. Köhler, W. Neumann, M. Schmidbauer, M. Hanke, 
     D. Grigoriev, P. Schäfer, H. Kirmse, I. Hausler 
     and R. Schneider .......................................... 97
5.1. Introduction .............................................. 97
5.2. Liquid Phase Epitaxy of SiGe/Si: A Model System for the
     Stranski-Krastanow Process ................................ 99
     5.2.1. Dot Evolution in a Close-to-Equilibrium Regime ..... 99
5.3. (In,Ga)As Quantum Dots on GaAs ........................... 103
     5.3.1. Shape, Size, Strain and Composition Gradient in 
            InGaAs QD Arrays .................................. 103
     5.3.2. Chemical Composition of (In,Ga)As QDs Determined 
            by ТЕМ ............................................ 107
     5.3.3. Controlling 3D Ordering in (In,Ga)As QD Arrays 
            through GaAs Surface Orientation .................. 109
5.4. Ga(Sb,As) Quantum Dots on GaAs ........................... 113
     5.4.1. Structural Characterisation of Ga(Sb,As) QDs by 
            High-Resolution ТЕМ Imaging ....................... 117
     5.4.2. Chemical Characterisation of Ga(Sb,As) QDs by 
            HAADF STEM Imaging ................................ 118
References .................................................... 119

6  The Atomic Structure of Quantum Dots
     Mario Dähne, Holger Eisele and Karl Jacobi ............... 123
6.1. Introduction ............................................. 123
6.2. Experimental Details ..................................... 124
6.3. STM Studies of InAs Quantum Dots on the Growth Surface ... 124
6.4. XSTM Studies of Buried Nanostructures .................... 127
     6.4.1. InAs Quantum Dots ................................. 127
     6.4.2. InGaAs Quantum Dots ............................... 131
     6.4.3. GaSb Quantum Dots ................................. 134
6.5. Conclusion ............................................... 135

References .................................................... 136

7  Theory of Excitons in InGaAs/GaAs Quantum Dots
     Andrei Schliwa and Momme Winkelnkemper ................... 139
7.1. Introduction ............................................. 139
7.2. Interrelation of QD-Structure, Strain and 
     Piezoelectricity, and Coulomb Interaction ................ 140
     7.2.1. The Binding Energies of the Few Particle 
            Complexes ......................................... 140
7.3. Method of Calculation .................................... 143
     7.3.1. Calculation of Strain ............................. 144
     7.3.2. Piezoelectricity and the Reduction of Lateral 
            Symmetry .......................................... 145
     7.3.3. Single Particle States ............................ 147
     7.3.4. Many-Particle States .............................. 148
     7.3.5. The Configuration Interaction Model ............... 148
     7.3.6. Interband Spectra ................................. 150
7.4. The Investigated Structures: Variation of Size, Shape 
     and Composition .......................................... 150
7.5. The Impact of QD Size .................................... 151
     7.5.1. The Role of the Piezoelectric Field ............... 153
7.6. The Aspect Ratio ......................................... 155
     7.6.1. Vertical Aspect Ratio ............................. 155
     7.6.2. Lateral Aspect Ratio .............................. 157
7.7. Different Composition Profiles ........................... 157
     7.7.1. Inverted Cone-Like Composition Profile ............ 157
     7.7.2. Annealed QDs ...................................... 159
     7.7.3. InGaAs QDs with Uniform Composition ............... 159
7.8. Correlation vs. QD Size, Shape and Particle Type ......... 159
7.9. Conclusions .............................................. 162
References .................................................... 163

8  Phonons in Quantum Dots and Their Role in Exciton
   Dephasing
     F. Grosse, E.A. Muljarov and R. Zimmermann ............... 165
8.1. Introduction ............................................. 165
8.2. Structural Properties of Semiconductor Nanostructures .... 166
8.3. Theory of Acoustic Phonons in Quantum Dots ............... 166
     8.3.1. Continuum Elasticity Model of Phonons ............. 167
     8.3.2. Phonons in Quantum Dots ........................... 170
8.4. Exciton-Acoustic Phonon Coupling in Quantum Dots ......... 171
8.5. Dephasing of the Exciton Polarization in Quantum Dots .... 173
     8.5.1. Single Exciton Level: Independent Boson Model ..... 174
     8.5.2. Multilevel System: Real and Virtual Phonon-
            Assisted Transitions .............................. 176
     8.5.3. Application to Coupled Quantum Dots ............... 182
8.6. Summary .................................................. 184
References .................................................... 185

9  Theory of the Optical Response of Single and Coupled 
   Semiconductor Quantum Dots
     C. Weber, M. Richter, S. Ritter and A. Knorr ............. 189
9.1. Introduction ............................................. 189
9.2. Theory ................................................... 190
     9.2.1. Quantum Dot Model ................................. 190
     9.2.2. Hamiltonian ....................................... 191
     9.2.3. Mathematical Formalisms ........................... 193
9.3. Single Quantum Dot Response .............................. 196
     9.3.1. Linear Absorption Spectra and Quantum Optics ...... 196
     9.3.2. Semiclassical Nonlinear Dynamics .................. 199
9.4. Two Coupled Quantum Dots ................................. 201
     9.4.1. Absorption Spectra ................................ 202
     9.4.2. Excitation Transfer ............................... 202
     9.4.3. Rabi Oscillations ................................. 203
     9.4.4. Pump-Probe/Differential Transmission Spectra ...... 204
9.5. Multiple Quantum Dots .................................... 205
     9.5.1. Four-Wave-Mixing: Photon Echo in Quantum Dot 
            Ensembles ......................................... 205
     9.5.2. Absorption of Multiple Coupled Quantum Dots ....... 205
     9.5.3. Energy Transfer of Multiple Coupled Quantum 
            Dots .............................................. 206
9.6. Conclusion ............................................... 206
References .................................................... 207

10 Theory of Nonlinear Transport for Ensembles of Quantum
   Dots
     G. Kießilich, A. Wacker and E. Schöll .................... 211
10.1.Introduction ............................................. 211
10.2.Coulomb Interaction within a Quantum Dot Layer ........... 211
10.3.Transport in Quantum Dot Stacks .......................... 213
10.4.Current Fluctuations and Shot Noise ...................... 214
10.5.Full Counting Statistics and Decoherence in Coupled 
     Quantum Dots.............................................. 216
10.6.Conclusion ............................................... 218
References .................................................... 219

11 Quantum Dots for Memories
     M. Geller and A. Marent .................................. 221
11.1.Introduction ............................................. 221
11.2.Semiconductor Memories ................................... 222
     11.2.1.Dynamic Random Access Memory (DRAM)................ 222
     11.2.2.Nonvolatile Semiconductor Memories (Flash) ........ 223
     11.2.3.A QD-based Memory Cell ............................ 224
11.3.Charge Carrier Storage in Quantum Dots ................... 226
     11.3.1.Experimental Technique ............................ 226
     11.3.2.Carrier Storage in InGaAs/GaAs Quantum Dots ....... 228
     11.3.3.Hole Storage in GaSb/GaAs Quantum Dots ............ 229
     11.3.4.InGaAs/GaAs Quantum Dots with Additional AlGaAs  
            Barrier ........................................... 230
11.4.Conclusion and Outlook ................................... 233
References .................................................... 235

12 Visible-Bandgap II-VI Quantum Dot Heterostructures
     llya Akimov, Joachim Puis, Michael Rabe and Fritz 
     Henneberger .............................................. 237
12.1.Introduction ............................................. 237
12.2.Epitaxial Growth ......................................... 238
12.3.Few-Particles States and Their Fine Structure ............ 241
     12.3.1.Excitons and Biexcitons ........................... 241
     12.3.2.Trions in Charged Quantum Dots .................... 243
12.4.Coherent Control of the Exciton-Biexciton System ......... 245
12.5.Spin Relaxation of Excitons, Holes, and Electrons ........ 247
     12.5.1.Exciton Quantum Coherence ......................... 247
     12.5.2.Hole Spin Lifetime ................................ 248
     12.5.3.Spin Dynamics of the Resident Electron ............ 249
12.6.Diluted Magnetic Quantum Dots ............................ 251
References .................................................... 253

13 Narrow-Gap Nanostructures in Strong Magnetic Fields
     T. Tran-Anh and M. Ortenberg ............................. 255
13.1.Introduction ............................................. 255
13.2.Materials: HgSe/HgSe:Fe .................................. 256
13.3.Fabrication of HgSe/HgSe:Fe Nanostructures ............... 256
     13.3.1.Quantum Wells ..................................... 257
     13.3.2.Roof-Ridge Quantum Wires .......................... 258
     13.3.3.Quantum Dots ...................................... 259
13.4.Electronic Characterization of the HgSe/HgSe:Fe 
     Nano-Structures in Strong Magnetic Fields ................ 262
     13.4.1.High-Field Magneto Transport ...................... 262
     13.4.2.Infrared Magneto-Resonance Spectroscopy ........... 263
13.5.Summary .................................................. 267
References .................................................... 267

14 Optical Properties of III-V Quantum Dots
     Udo W. Pohl, Sven Rodt and Axel Hoffmann ................. 269
14.1.Introduction ............................................. 269
14.2.Confined States and Many-Particle Effects ................ 270
     14.2.1.Renormalization ................................... 270
     14.2.2.Phonon Interaction ................................ 274
     14.2.3.Electronic Tuning by Strain Engineering ........... 276
     14.2.4.Multimodal InAs/GaAs Quantum Dots ................. 278
14.3.Single InAs/GaAs Quantum Dots ............................ 281
     14.3.1.Spectral Diffusion ................................ 281
     14.3.2.Size-Dependent Anisotropic Exchange 
            Interaction ....................................... 282
     14.3.3.Binding Energies of Excitonic Complexes ........... 285
     14.3.4.Data Storage Using Confined Trions ................ 286
     14.3.5.Electronic Tuning by Annealing .................... 287
14.4.Optical Properties of InGaN/GaN Quantum Dots ............. 288
     14.4.1.Time-Resolved Studies on Quantum Dot Ensembles .... 289
     14.4.2.Single-Dot Spectroscopy ........................... 292
14.5.Summary .................................................. 296
References .................................................... 298

15 Ultrafast Coherent Spectroscopy of Single Semiconductor Quantum
   Dots
     Christoph Lienau and Thomas Elsaesser .................... 301
15.1.Introduction ............................................. 301
15.2.Interface Quantum Dots ................................... 303
15.3.Coherent Spectroscopy of Interface Quantum Dots: 
     Experimental Technique ................................... 305
15.4.Coherent Control in Single Interface Quantum Dots ........ 308
     15.4.1.Ultrafast Optical Nonlinearities of Single 
            Interface Quantum Dots ............................ 308
     15.4.2.Rabi Oscillations in a Quantum Dot ................ 312
     15.4.3.Optical Stark Effect: Ultrafast Control of 
            Single Exciton Polarizations ...................... 315
15.5.Coupling Two Quantum Dots via the Dipole-Dipole 
     Interaction .............................................. 319
15.6.Summary and Conclusions .................................. 323
References .................................................... 325

16 Single-Photon Generation from Single Quantum Dots
     Matthias Scholz, Thomas Aichele and Oliver Benson ........ 329
16.1.Introduction ............................................. 329
16.2.Single Quantum Dots as Single-Photon Emitters ............ 331
     16.2.1.Photon Statistics of Single-Photon Emitters ....... 331
     16.2.2.Micro-Photoluminescence ........................... 332
     16.2.3.Single Photons from InP Quantum Dots .............. 333
16.3.Multiphoton Emission from Single Quantum Dots ............ 334
16.4.Realization of the Ultimate Limit of a Light Emitting 
     Diode .................................................... 339
16.5.Applications in Quantum Information Processing ........... 343
     16.5.1.Quantum Key Distribution .......................... 343
     16.5.2.Quantum Computing ................................. 344
16.6.Outlook .................................................. 346
References .................................................... 347

Index ......................................................... 351


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:19:38 2019. Размер: 23,027 bytes.
Посещение N 2452 c 10.03.2009