Near-Field Optical Fiber Probes and the Imaging Applications
S.Mononobe ................................................... 1
1. Introduction ................................................. 1
2. Basic Techniques for Tapering and Metallizing Optical
Fibers ....................................................... 3
2.1. Heating-and-pulling and Metallization Techniques ........ 3
2.2. Meniscus Etching ........................................ 6
2.3. Selective Etching ....................................... 6
3. Protrusion-type Probe and Its Imaging Applications .......... 12
3.1. Protrusion-type Probe .................................. 12
3.2. Fabricating Protrusion-type Probes
by Selective Resin-Coating Method ...................... 13
3.3. C-mode SNOM Imaging of Salmonella Flagellar
Filaments in Air and Water ............................. 14
3.4. C-mode SNOM Images of Microtubules ..................... 18
3.5. Near-Field Spectroscopic Investigation of
Semiconductor Quantum Dots Under Extremely Low
Temperature ............................................ 19
3.6. Transmission Efficiencies of the Protrusion-type
Probes ................................................. 22
4. Mctal-Diclcctric-Metal-Coated Fiber Probe
and Near-Field Imaging of DNA Molecules ..................... 23
4.1. Ag-MgF2-Al-Coated Fiber Probe .......................... 23
4.2. Sample Preparation ..................................... 24
4.3. DNA Images ............................................. 25
5. Apertured Probes for Near-Field Imaging of Dye-Doped
Samples ..................................................... 26
6. Double-Tapered Fiber Probe and Spectroscopic Applications ... 30
6.1. Double-Tapered Probe ................................... 30
6.2. Near-Field Photoluminescence Image of Lateral
p-n Junctions Obtained with the i-c Mode SNOM .......... 33
6.3. Near-Field Raman Spectroscopy of Polydiacetylene ....... 34
7. Pure1 Silica Core Fiber Probes and Ultraviolet
Applications ................................................ 35
7.1. UV Triple-Tapered Probe ................................ 37
7.2. UV Near-Field Photoluminescence Images of Polysilane ... 40
7.3 Fabrication of a Pure Silica Fiber Probe
by Pulling and Etching ................................. 43
8. Outlook ..................................................... 48
Appendix .................................................... 48
References .................................................. 53
A Novel Method for Forming Uniform Surface-Adsorbed
Metal Particles and Development of a Localized
Surface-Plasmon Resonance Sensor
H.Takei, M.Himmelhaus ....................................... 57
1. A General Method for Preparing Surface-Bound Metal
Particles ................................................... 57
1.1. Surface-Bound Metal Particles .......................... 57
1.2. Use of a Monolayer of Monodispcrsc Dielectric
Spheres as a Template .................................. 58
1.3. Formation of the Monolayer ............................. 59
1.4. Physical Parameters Under Control ...................... 62
1.5. Optical Properties ..................................... 68
1.6. General Discussion ..................................... 76
2. Optical Biosensing Application .............................. 78
2.1. Significance of Molecular Interactions in Life
Science ................................................ 78
2.2. Measurement Examples ................................... 81
2.3. General Characteristics of the Sensor .................. 83
3. Curious Observation ......................................... 89
4. Conclusion .................................................. 90
References .................................................. 91
Near-Field Optical-Head Technology for High-Density,
Near-Field Optical Recording
T.Matsumoto ................................................. 93
1. Introduction ................................................ 93
2. Review of Near-Field Optical Recording ...................... 94
2.1. The Limit of Conventional Optical Recording ............ 94
2.2. Near-Field Optical Recording Method .................... 95
2.3. Hybrid Recording Method ................................ 96
3. Technical Issues Regarding the Near-Field Optical Head ...... 96
3.1. Precise Control of the Spacing Between the Head
and the Recording Medium ............................... 97
3.2. Integration of Peripheral Components
into the Near-Field Optical Head ....................... 98
3.3. Obtaining High Efficiency
in Generating the Optical Near Field. . 99
4. Novel Design of a Near-Field Optical Head Using
a Plasmon .................................................. 103
4.1. Principle ............................................. 103
4.2. Simulation Method ..................................... 105
4.3. Use of an Aperture and a Circular Metallic Plate ...... 105
4.4. Use of a Wedge-Shaped Metallic Plate Placed in Air .... 108
4.5. Use of a Wedge-Shaped Metallic Plate
Placed near the Recording Medium ...................... 116
4.6. Near-Field Optical Head Using Two Metallic Plates ..... 120
4.7. Fabrication of a Near-Field Optical Head
with a Wedge-Shaped Metallic Plate .................... 122
5. Summary .................................................... 124
References ................................................. 125
Nano-Optical Media for Ultrahigh-Density Storage
K.Naito. H.Hieda, T.Ishino, K.Tanaka, M.Sakurai,
Y.Kamata, S.Morita. A.Kikitsu. K.Asakawa ................... 127
1. Introduction ............................................... 127
2. Magnetic Patterned Media ................................... 129
2.1. Preparation ........................................... 129
2.2. Magnetic Properties ................................... 134
3. Organic-Dye-Patterned Media ................................ 136
3.1. Preparation ........................................... 136
3.2. Electrical and Optical Measurements ................... 138
4. Conclusion ................................................. 143
References ................................................. 143
A Phenomenological Description of Optical Near Fields and
Optical Properties of N Two-Level Systems Interacting with
Optical Near Fields
A.Shojiguchi. K.Kobayashi, S.Sangu, K.Kitahara,
M.Ohtsu .................................................... 145
1. Introduction ............................................... 145
1.1. What are Optical Near Fields? ......................... 145
1.2. Theoretical Approaches ................................ 147
1.3. Difference Between Optical Near Fields
and Propagating Fields: Individual
vs. Global Excitation ................................. 148
1.4. Two-Level System Interacting with Radiation Fields:
Dickers Superradiance ................................. 150
1.5. Chapter Outline ....................................... 151
2. Model Hamiltonian .......................................... 151
3. Dynamics of Bosonic Excitons ............................... 154
3.1. Boson Approximation and Diagonalization
of the Hamiltonian .................................... 154
3.2. Dipole Dynamics Driven by Local Excitation ............ 155
4. Dynamics of Fermionic Excitons ............................. 160
4.1. Perturbative Expansion of Time-Evolution Operator ..... 160
4.2. Numerical Results and Dynamical Properties ............ 162
4.3. Dynamics of Dipole-Forbidden States
via Optical Near-Field Interaction .................... 164
4.4. Semiclassical Approximation ........................... 167
5. Effective Hamiltoiiian and the Dipole Ordering ............. 168
5.1. Effective Hamiltoiiian ................................ 168
5.2. Classification of Quasisteady States .................. 170
5.3. Response to the Initial Input of a Localized Photon:
the Robustness of Quasisteady States .................. 174
6. Dicke's Superradiance ...................................... 177
6.1. Dicko States and Superradiance ........................ 177
6.2. Dicke Master Equation and Solutions for a
Small System .......................................... 180
6.3. Effect of the Dipole-Dipole Interaction ............... 188
6.4. Large-Sample Superradiance ............................ 192
7. Radiation from the Dipolc-Ordered States ................... 195
7.1. Radiation Property of the Dipolc-Ordered States ....... 195
8. Radiation from a Dissipative System ........................ 197
8.1. Semiclassical Description with the Effective
Hainiltonian .......................................... 199
8.2. Quantum Correlations .................................. 201
9. Dynamics of Localized Photons:
the Storage Mode of Localized Photons ...................... 204
9.1. The Transportation of Localized Photons:
the Storage and Through Flowing Modes ................. 204
9.2. The Emergence of Dynamical Nonlinearity ............... 208
9.3. Two-Site Open System with Intermittent
Chaotic Behavior ...................................... 211
10.Conclusions ................................................ 213
References ................................................. 217
Index ......................................................... 221
|