Peitgen H.-O. Chaos and fractals (New York, 2004). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаPeitgen H.-O. Chaos and fractals: new frontiers of science / Peitgen H.-O., Ju"rgens H., Saupe D. - 2nd ed. - New York: Springer, 2004. - xiii, 864 p.: ill. - ISBN 978-0-387-20229-7
 

Оглавление / Contents
 
Foreword ........................................................ 1
Introduction: Causality Principle, Deterministic Laws and 
              Chaos ............................................. 9
1.   The Backbone of Fractals: Feedback and the Iterator ....... 15
     1.1.  The Principle of Feedback ........................... 17
     1.2.  The Multiple Reduction Copy Machine ................. 23
     1.3.  Basic Types of Feedback Processes ................... 27
     1.4.  The Parable of the Parabola — Or: Don't Trust Your 
           Computer ............................................ 37
     1.5.  Chaos Wipes Out Every Computer ...................... 49
2.   Classical Fractals and Self-Similarity .................... 61
     2.1.  The Cantor Set ...................................... 65
     2.2.  The Sierpinski Gasket and Carpet .................... 76
     2.3.  The Pascal Triangle ................................. 80
     2.4.  The Koch Curve ...................................... 87
     2.5.  Space-Filling Curves ................................ 92
     2.6.  Fractals and the Problem of Dimension .............. 104
     2.7.  The Universality of the Sierpinski Carpet .......... 110
     2.8.  Julia Sets ......................................... 120
     2.9.  Pythagorean Trees .................................. 124
3.   Limits and Self-Similarity ............................... 129
     3.1.  Similarity and Scaling ............................. 132
     3.2.  Geometric Series and the Koch Curve ................ 141
     3.3.  Corner the New from Several Sides: Pi and the 
           Square Root of Two ................................. 147
     3.4.  Fractals as Solutions of Equations ................. 162
4.   Length, Area and Dimension: Measuring Complexity and 
     Scaling Properties ....................................... 173
     4.1.  Finite and Infinite Length of Spirals .............. 175
     4.2.  Measuring Fractal Curves and Power Laws ............ 182
     4.3.  Fractal Dimension .................................. 192
     4.4.  The Box-Counting Dimension ......................... 202
     4.5.  Borderline Fractals: Devil's Staircase and Peano 
           Curve .............................................. 210
5.   Encoding Images by Simple Transformations ................ 215
     5.1.  The Multiple Reduction Copy Machine Metaphor ....... 217
     5.2.  Composing Simple Transformations ................... 220
     5.3.  Relatives of the Sierpinski Gasket ................. 230
     5.4.  Classical Fractals by IFSs ......................... 238
     5.5.  Image Encoding by IFSs ............................. 244
     5.6.  Foundation of IFS: The Contraction Mapping 
           Principle .......................................... 248
     5.7.  Choosing the Right Metric .......................... 258
     5.8.  Composing Self-Similar Images ...................... 262
     5.9.  Breaking Self-Similarity and Self-Affinity: 
           Networking with MRCMs .............................. 267
6.   The Chaos Game: How Randomness Creates Deterministic 
     Shapes ................................................... 277
     6.1.  The Fortune Wheel Reduction Copy Machine ........... 280
     6.2.  Addresses: Analysis of the Chaos Game .............. 287
     6.3.  Tuning the Fortune Wheel ........................... 300
     6.4.  Random Number Generator Pitfall 311
     6.5.  Adaptive Cut Methods ............................... 319
7.   Recursive Structures: Growing Fractals and Plants ........ 329
     7.1.  L-Systems: A Language for Modeling Growth .......... 333
     7.2.  Growing Classical Fractals with MRCMs .............. 340
     7.3.  Turtle Graphics: Graphical Interpretation of 
           L-Systems .......................................... 351
     7.4.  Growing Classical Fractals with L-Systems .......... 355
     7.5.  Growing Fractals with Networked MRCMs .............. 367
     7.6.  L-System Trees and Bushes .......................... 372
8.   Pascal's Triangle: Cellular Automata and Attractors ...... 377
     8.1.  Cellular Automata .................................. 382
     8.2.  Binomial Coefficients and Divisibility ............. 393
     8.3.  IFS: From Local Divisibility to Global Geometry .... 404
     8.4.  HIFS and Divisibility by Prime Powers .............. 412
     8.5.  Catalytic Converters, or How Many Cells Are 
           Black? ............................................. 420
9.   Irregular Shapes: Randomness in Fractal Constructions .... 423
     9.1.  Randomizing Deterministic Fractals ................. 425
     9.2.  Percolation: Fractals and Fires in Random 
           Forests ............................................ 429
     9.3.  Random Fractals in a Laboratory Experiment ......... 440
     9.4.  Simulation of Brownian Motion ...................... 446
     9.5.  Scaling Laws and Fractional Brownian Motion ........ 456
     9.6.  Fractal Landscapes ................................. 462
10.  Deterministic Chaos: Sensitivity, Mixing, and Periodic 
     Points ................................................... 467
     10.1. The Signs of Chaos: Sensitivity .................... 469
     10.2. The Signs of Chaos: Mixing and Periodic Points ..... 480
     10.3. Ergodic Orbits and Histograms ...................... 485
     10.4. Metaphor of Chaos: The Kneading of Dough ........... 496
     10.5. Analysis of Chaos: Sensitivity, Mixing, and 
           Periodic Points .................................... 509
     10.6. Chaos for the Quadratic Iterator ................... 520
     10.7. Mixing and Dense Periodic Points Imply 
           Sensitivity ........................................ 529
     10.8. Numerics of Chaos: Worth the Trouble or Not? ....... 535
11.  Order and Chaos: Period-Doubling and Its Chaotic 
     Mirror ................................................... 541
     11.1. The First Step from Order to Chaos: Stable Fixed 
           Points ............................................. 548
     11.2. The Next Step from Order to Chaos: The Period-
           Doubling Scenario .................................. 559
     11.3. The Feigenbaum Point: Entrance to Chaos ............ 575
     11.4. From Chaos to Order: A Mirror Image ................ 583
     11.5. Intermittency and Crises: The Backdoors to Chaos ... 595
12.  Strange Attractors: The Locus of Chaos ................... 605
     12.1. A Discrete Dynamical System in Two Dimensions: 
           Henon's Attractor .................................. 609
     12.2. Continuous Dynamical Systems: Differential 
           Equations .......................................... 628
     12.3. The Rossler Attractor .............................. 636
     12.4. The Lorenz Attractor ............................... 647
     12.5. Quantitative Characterization of Strange Chaotic 
           Attractors: Ljapunov Exponents ..................... 659
     12.6. Quantitative Characterization of Strange Chaotic 
           Attractors: Dimensions ............................. 671
     12.7. The Reconstruction of Strange Attractors ........... 694
     12.8. Fractal Basin Boundaries ........................... 706
13.  Julia Sets: Fractal Basin Boundaries ..................... 715
     13.1. Julia Sets as Basin Boundaries ..................... 717
     13.2. Complex Numbers — A Short Introduction ............. 722
     13.3. Complex Square Roots and Quadratic Equations ....... 729
     13.4. Prisoners versus Escapees .......................... 733
     13.5. Equipotentials and Field Lines for Julia Sets ...... 744
     13.6. Binary Decomposition, Field Lines and Dynamics ..... 756
     13.7. Chaos Game and Self-Similarity for Julia Sets ...... 764
     13.8. The Critical Point and Julia Sets as Cantor Sets ... 769
     13.9. Quaternion Julia Sets .............................. 780
14.  The Mandelbrot Set: Ordering the Julia Sets .............. 783
     14.1. From the Structural Dichotomy to the Binary 
           Decomposition ...................................... 785
     14.2. The Mandelbrot Set - A Road Map for Julia Sets ..... 797
     14.3. The Mandelbrot Set as a Table of Content ........... 820
Bibliography .................................................. 839
Index ......................................................... 853


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:19:36 2019. Размер: 12,143 bytes.
Посещение N 2192 c 20.01.2009