Part I Atomic and Surface Data Issues in Nuclear Fusion
1. Plasma-Wall Interaction: Status and Data Needs
U.Samm .................................................... 3
1.1. Introduction ............................................... 3
1.2. Key Issues of Plasma-Wall Interaction ...................... 4
1.3. The ITER-Concept to Control Plasma-Wall Interaction ........ 7
1.4. The Crucial Processes and Data Needs for Modeling ......... 10
1.4.1. The Problem of Tritium Retention in Fusion
Devices ............................................ 10
1.4.2. Location and Strength of Impurity Sources .......... 12
1.4.3. Migration of Eroded Materials and Layer
Formation by Deposited Impurities .................. 17
1.4.4. Modeling of Erosion and Deposition ................. 21
1.4.5. Release of Hydrogen Atoms and Molecules
from Recycling Processes ........................... 24
1.5. Summary and Conclusions ................................... 26
References ................................................ 27
2. Modeling of Fusion Edge Plasmas: Atomic and Molecular
Data Issues
D.Reiter ................................................. 29
2.1. Introduction .............................................. 29
2.1.1. Computational Edge Plasma Models ................... 30
2.2. The Fusion Edge Plasma Models ............................. 34
2.2.1. Collisional Contributions to Braginskii
Equations .......................................... 42
2.2.2. Standard Form of Source Terms ...................... 44
2.2.3. The I-Integral Representation ...................... 45
2.2.4. Application to Elastic Neutral Ion Collisions ...... 48
2.3. Applications .............................................. 50
2.3.1. Applications to TEXTOR ............................. 52
2.3.2. Applications to ASDEX Upgrade ...................... 54
2.4. Conclusions, Outlook ...................................... 59
References ................................................ 59
3. Energy Deposition from ELMs in Fusion Devices
A.Loarte ................................................. 61
3.1. Introduction .............................................. 61
3.1.1. Features of the Regime of Enhanced Energy
Confinement (H-Mode) ............................... 62
3.1.2. Characteristics of ELMs and Their Effects
on the Pedestal Plasma ............................. 66
3.2. Characteristics of Type I ELM Energy and Particle
Losses from the Core Plasma ............................... 71
3.2.1. Dynamics and Timescales for the Type I ELM
Energy and Particle Losses from the Core Plasma .... 74
3.2.2. Magnitude of the Type I ELM Energy and Particle
Losses from the Core Plasma and Their Extrapolation
to Next Step Burning Plasma Experiments ................... 76
3.3. Energy Fluxes to PFCs During Type I ELMs
in Existing Experiments and Implications
for Burning Plasma Experiments ............................ 81
3.3.1. Spatial and Temporal Characteristics
of the Type I ELM Energy Fluxes to PFCs ................... 81
3.3.2. Implications of the Type I ELM Energy Fluxes
to PFCs in Burning Plasma Experiments:
Application to the ITER, Reference QDT = 10 Scenario ...... 87
3.4. Summary and Conclusions ................................... 93
References ................................................ 94
Part II Plasma Diagnostics
4. Molecular Diagnostics of Cold Edge Plasmas
U.Fantz .................................................. 99
4.1. Molecules in Low Temperature Plasmas ...................... 99
4.2. Molecular Emission Spectroscopy .......................... 101
4.2.1. Interpretation of Molecular Spectra ............... 102
4.2.2. Molecular Hydrogen and Collisional-Radiative
Modeling .......................................... 106
4.2.3. Flux Measurements ................................. 108
4.3. Role of Molecular Hydrogen in Recombination (MAR) ........ 109
4.4. Vibrational Population of Hydrogen ....................... 1ll
4.4.1. Measurements and Calculations ..................... 112
4.4.2. Surface Effects ................................... 113
4.5. Hydrocarbons and Chemical Erosion ........................ 114
4.5.1. Dissociation, Radiation and Carbon Fluxes ......... 115
4.5.2. Gas Puff Experiments .............................. 117
4.5.3. Erosion Yields in Laboratory Plasmas .............. 117
4.6. Conclusions .............................................. 119
References .................................................... 119
5. Divertor Spectroscopy with Molecular Transport
H.Kubo. H.Takenaga, T.Nakano, S.Higashijima,
K.Shimizu, K.Sawada, S.Kobayashi, the JT-60 Team ........ 121
5.1. Introduction ............................................. 121
5.2. Hydrogen Molecules in Attached Divertor Plasmas .......... 122
5.3. Hydrocarbon Molecules in Attached Divertor Plasmas ....... 127
5.4. Molecules in Detached Divertor Plasmas ................... 129
5.5. Conclusions .............................................. 132
References .................................................... 133
6. High-Temperature Plasma Edge Diagnostics
A.Pospieszczyk .......................................... 135
6.1. Introduction ............................................. 135
6.2. Techniques and Methods ................................... 137
6.2.1. Observation Geometries ............................ 137
6.2.2. Evaluation Methods ................................ 138
6.3. Results .................................................. 141
6.3.1. Relevant Elements ................................. 141
6.3.2. Carbon ............................................ 142
6.3.3. Hydrocarbons ...................................... 144
6.3.4. Hydrogen/Deuterium ................................ 147
6.3.5. Low-Z Impurities: Oxygen .......................... 151
6.3.6. Medium-Z Impurities: Neon and Silicon ............. 152
6.3.7. High-Z Impurities: Molybdenum and Tungsten ........ 154
6.3.8. Atomic Helium Beams ............................... 155
6.4. Conclusions and Recommendations .......................... 158
References .................................................... 158
7. X-ray Spectroscopy of High n Transitions
of He- and Ne-Like Ions in Alcator C-Mod Plasmas
J.E.Rice, K.B.Fournier, E.S.Marmar, J.L.Terry,
U.I.Safronova ........................................... 163
7.1. Introduction ............................................. 163
7.2. Experiment Description ................................... 165
7.3. Code Descriptions ........................................ 166
7.4. He-Like and Neighboring Ions ............................. 167
7.5. Ne-Like and Neighboring Ions ............................. 172
7.6. Conclusions .............................................. 178
References .................................................... 179
8. High-Temperature Plasmas Diagnostics
by X-ray Spectroscopy in the Low Density Limit
G.Bertschinger, O.Marchuk ............................... 183
8.1. Introduction ............................................. 183
8.2. X-ray Spectrometers ...................................... 185
8.3. Atomic Physics of He-Like Spectra ........................ 187
8.3.1. Excitation ........................................ 188
8.3.2. Dielectronic Recombination ........................ 189
8.3.3. Radiative Recombination ........................... 190
8.3.4. Charge Exchange Recombination ..................... 191
8.3.5. Inner-Shell Excitation ............................ 191
8.3.6. Inner-Shell Ionization ............................ 191
8.4. Determination of Plasma Parameters ....................... 192
8.4.1. Electron and Ion Temperature,
Toroidal Plasma Velocity .......................... 194
8.4.2. Relative Abundance of Charged States .............. 194
8.5. Conclusions .............................................. 197
References .................................................... 198
Part III Surface Processes and Material Issues
9. Review and Status of Physical Sputtering
and Chemical Erosion of Plasma Facing Materials
J.Roth .................................................. 203
9.1. Introduction ............................................. 203
9.2. Physical Sputtering ...................................... 204
9.2.1. Sputtering of Pure Elements ....................... 204
9.2.2. Sputtering by Non-recycling Ions
(Mixed Materials) ................................. 209
9.2.3. Extrapolation to Fusion Reactor Conditions ........ 212
9.3. Chemical Erosion ......................................... 213
9.3.1. Present Understanding of Atomistic Processes ...... 213
9.3.2. Eroded Species and Sticking Coefficient ........... 215
9.3.3. Flux Dependence ................................... 218
9.3.4. Fluence Dependence and Surface Topography ......... 219
9.3.5. Doping for Reduction of the Chemical Erosion
Yield ............................................. 219
9.3.6. Open Questions and Data Needs ..................... 221
References .................................................... 222
10.Hydrogen Retention in and Release
from Carbon Materials
A.A.Haasz. J.W.Davis .................................... 225
10.1.Introduction ............................................. 225
10.2.Hydrogen Retention in Pure and Doped Carbon Materials .... 226
10.2.1.Implantation and Diffusion ........................ 226
10.2.2.Co-deposition ..................................... 230
10.2.3.Effect of Neutron Damage .......................... 230
10.3.Hydrogen Release from Graphite ........................... 231
10.3.1.Re-emission ....................................... 231
10.3.2.Thermal Release During Thermal Desorption
Spectroscopy (TDS) ................................ 232
10.4.H-Isotope Removal from C-Based Co-deposits ............... 234
10.4.1.Tritium Removal Experience in TFTR and JET ........ 235
10.4.2.R&D of Co-deposit Removal Techniques .............. 237
10.5.Conclusion ............................................... 242
References .................................................... 244
11.Interaction of Low-Energy Ions
and Hydrocarbon Radicals with Carbon Surfaces
W.Jacob, C.Hopf, M.Meier, T.Schwarz-Selinger ............ 249
11.1.Introduction ............................................. 249
11.2.Properties of Hydrocarbon Layers ......................... 251
11.3.Experimental ............................................. 254
11.3.1.The Cavity Technique .............................. 254
11.3.2.Particle-Beam Experiments ......................... 257
11.4.Results .................................................. 258
11.4.1.Surface Loss Probabilities ........................ 258
11.4.2.Sticking Coefficient of CH3 Radicals .............. 262
11.4.3.Synergistic Interaction of CH3 and Atomic
Hydrogen .......................................... 267
11.4.4.Chemical Sputtering ............................... 272
11.4.5.Ion-Induced Deposition ............................ 278
11.5.Conclusions .............................................. 280
References .................................................... 281
12.Tritium Inventory in the Materials
of the ITER Plasma-Facing Components
G.Federici, C.H.Skinner ................................. 287
12.1.Introduction ............................................. 288
12.2.Historical Perspective ................................... 289
12.3.Highlights of the ITER Design and Suitable
Plasma-Facing Material Options ........................... 291
12.3.1.ITER Design ....................................... 291
12.3.2.Plasma Facing Materials ........................... 293
12.3.3.Tritium-Related Constraints on a BPX
Operation Schedule ................................ 296
12.3.4.Summary of Recent Experimental Findings ........... 299
12.4.ITER Tritium Retention Estimates and Uncertainties ....... 305
12.5.Further Research and Development (R&D) Needs ........ 308
12.6.Conclusions ......................................... 312
References .................................................... 314
13.Mixed and High-Z Plasma-Facing Materials in TEXTOR
E.Vietzke, A.Pospieszczyk, S.Brezinsek,
A.Kirschner, A.Huber, T.Hirai.Ph.Mertens,
V.Philipps, G.Sergienko ................................. 319
13.1.Introduction ............................................. 319
13.2.Silicon-Carbon Material .................................. 320
13.2.1.Siliconization .................................... 320
13.2.2.Silicon-Doped CFC Material ........................ 321
13.3.Twin Limiter Experiments ................................. 322
13.4.B4C-Coated Copper Limiter ................................ 326
13.5.Modeling of Erosion, Deposition and Impurity Transport
with the ERO-TEXTOR Code ................................. 329
13.6.Conclusions and Outlook .................................. 331
References .................................................... 332
14.Beryllium and Liquid Metals as Plasma Facing Materials
R.P.Doerner ............................................. 335
14.1.Introduction ............................................. 335
14.2.Erosion .................................................. 336
14.2.1.Physical Sputtering of Beryllium .................. 336
14.2.2.Mixed-Material Erosion ............................ 338
14.2.3.Physical Sputtering of Liquid Metal Surfaces ...... 342
14.2.4.Erosion of Surfaces at Elevated Temperature ....... 345
14.3.Hydrogen Isotope Retention ............................... 347
14.3.1.Retention in Beryllium ............................ 347
14.3.2.Retention in BeO and Mixed Be Materials ........... 349
14.3.3.Retention in Li and Ga ............................ 352
14.4.Conclusion ............................................... 354
References .................................................... 355
Part IV Databases
15.IAEA Databases and Database Establishment Programs
R.E.H.Clark, D.Humbert .................................. 361
15.1.Introduction ............................................. 361
15.2.Overview ................................................. 362
15.3.Advisory Groups .......................................... 362
15.4.Co-ordinated Research Projects ........................... 364
15.5.A+M Unit Products ........................................ 366
15.5.1 Electronic Databases ............................ 366
References .................................................... 370
16.NIFS DATABASE and Cooperation with IAEA DCN
T.Koto, I.Murakami ...................................... 371
16.1.Introduction ............................................. 371
16.2.NIFS DATABASE ............................................ 372
16.3.IFS DPC Collaboration Program ............................ 374
16.3.1.Domestic Collaboration ............................ 374
16.3.2.International Collaboration ....................... 376
16.4.Data Center Network (DCN) ................................ 378
16.5.Recent Research Activities ............................... 380
16.6.Conclusion ............................................... 382
References .................................................... 382
17.The NIST Atomic Structure Databases
W.L.Wiese ............................................... 385
17.1.Introduction ............................................. 385
17.2.Data Dissemination on the Internet ....................... 386
17.3.The Scope of the NIST ASD Database ....................... 387
17.4.Interactive Features ..................................... 389
17.5.Related NIST Databases ................................... 389
17.6.Some Sample Searches ..................................... 390
17.7.Data Quality ............................................. 395
17.8.Outlook .................................................. 396
References .................................................... 397
18.The Atomic Data and Analysis Structure
H.P.Summers, M.G.О.'Mullane ............................. 399
18.1.Introduction ............................................. 399
18.2.General Principles of ADAS ............................... 400
18.3.ADAS Code and Data Organization .......................... 401
18.3.1.IDL-ADAS .......................................... 401
18.3.2.Data and Data Formats ............................. 404
18.3.3.Offline-ADAS ...................................... 405
18.4.Current Directions ....................................... 408
18.4.1.Errors and Uncertainties .......................... 408
18.4.2.Non-Maxwellian Electron Distributions ............. 409
18.4.3.Spectral Visualization for Heavy Species .......... 410
18.5.ADAS Special Projects .................................... 411
18.5.1.The DR Project .................................... 411
References .................................................... 413
19.Collision Processes of Atomic and Molecular Hydrogen
in Fusion Plasmas: The Cross-Section Data Status
R.K.Janev ............................................... 415
19.1.Introduction ............................................. 415
19.2.Hydrogen Atom Collision Processes ........................ 417
19.3.Collision Processes of Molecular Hydrogen and Its Ions ... 420
19.3.1.Collision Processes of Hydrogen Molecules ......... 420
19.3.2.Decay Processes of Electronically Excited
H2 States ......................................... 424
19.3.3.Collision Processes of H2+Ions .................... 425
19.3.4.Processes Involving H- and H3+ Ions ............... 428
19.4.Major Gaps in the H/H2 Collision Database ................ 429
19.5.Concluding Remarks ....................................... 431
References .................................................... 432
20.Partial and Differential Electron Impact Ionization
Cross-Sections for Small Hydrocarbon Molecules
G.Gluch, S.Feil, P.Scheier, W.Schustereder,
T.Tepnual, L.Feketeova.С.Mair, S.Matt-Leubner;
A.Stamatovic, T.D.Mark .................................. 437
20.1.Introduction ............................................. 437
20.2.Experimental ............................................. 440
20.3.Results .................................................. 442
References .................................................... 454
Index ......................................................... 457
|