Nair P.V. Quantum field (New York, 2005). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаNair P.V. Quantum field: A modern perspective. - New York: Springer, 2005. - viii, 557 p. - (Graduate texts in contemporary physics). - ISBN 0-387-21386-4; ISSN 0938-037X
 

Оглавление / Contents
 
1.  Results in Relativistic Quantum Mechanics ................... 1
    1.1.  Conventions ........................................... 1
    1.2.  Spin-zero particle .................................... 1
    1.3.  Dirac equation ........................................ 3
2.  The Construction of Fields .................................. 7
    2.1.  The correspondence of particles and fields ............ 7
    2.2.  Spin-zero bosons ...................................... 8
    2.3.  Lagrangian and Hamiltonian ........................... 11
    2.4.  Functional derivatives ............................... 13
    2.5.  The field operator for fermions ...................... 14
3.  Canonical Quantization ..................................... 17
    3.1.  Lagrangian, phase space, and Poisson brackets ........ 17
    3.2.  Rules of quantization ................................ 23
    3.3.  Quantization of a free scalar field .................. 25
    3.4.  Quantization of the Dirac field ...................... 28
    3.5.  Symmetries and conservation laws ..................... 32
    3.6.  The energy-momentum tensor ........................... 34
    3.7.  The electromagnetic field ............................ 36
    3.8.  Energy-momentum and general relativity ............... 37
    3.9.  Light-cone quantization of a scalar field ............ 38
    3.10. Conformal invariance of Maxwell equations ............ 39
4.  Commutators and Propagators ................................ 43
    4.1.  Scalar field propagators ............................. 43
    4.2.  Propagator for fermions .............................. 50
    4.3.  Grassman variables and fermions ...................... 51
5.  Interactions and the S-matrix .............................. 55
    5.1.  A general formula for the S-matrix ................... 55
    5.2.  Wick's theorem ....................................... 61
    5.3.  Perturbative expansion of the 5-matrix ............... 62
    5.4.  Decay rates and cross sections ....................... 67
    5.5.  Generalization to other fields ....................... 69
    5.6.  Operator formula for the N-point functions ........... 72
6.  The Electromagnetic Field .................................. 77
    6.1.  Quantization and photons ............................. 77
    6.2.  Interaction with charged particles ................... 81
    6.3.  Quantum electrodynamics (QED) ........................ 83
7.  Examples of Scattering Processes ........................... 85
    7.1.  Photon-scalar charged particle scattering ............ 85
    7.2.  Electron scattering in an external Coulomb field ..... 87
    7.3.  Slow neutron scattering from a medium ................ 89
    7.4.  Compton scattering ................................... 92
    7.5.  Decay of the π0 meson ................................ 95
    7.6.  Cerenkov radiation ................................... 97
    7.7.  Decay of the p-meson ................................. 99
8.  Functional Integral Representations ....................... 103
    8.1.  Functional integration for bosonic fields ........... 103
    8.2.  Green's functions as functional integrals ........... 105
    8.3.  Fermionic functional integral ....................... 108
    8.4.  The 5-matrix functional ............................. 111
    8.5.  Euclidean integral and QED .......................... 112
    8.6.  Nonlinear sigma models .............................. 114
    8.7.  The connected Green's functions ..................... 119
    8.8.  The quantum effective action ........................ 122
    8.9.  The S-matrix in terms of Г .......................... 126
    8.10.  The loop expansion ................................. 127
9.  Renormalization ........................................... 133
    9.1.  The general procedure of renormalization ............ 133
    9.2.  One-loop renormalization ............................ 135
    9.3.  The renormalized effective potential ................ 144
    9.4.  Power-counting rules ................................ 145
    9.5.  One-loop renormalization of QED ..................... 147
    9.6.  Renormalization to higher orders .................... 157
    9.7.  Counterterms and renormalizability .................. 162
    9.8.  RG equation for the scalar field .................... 169
    9.9.  Solution to the RG equation and critical behavior ... 173
10. Gauge Theories ............................................ 179
    10.1. The gauge principle ................................. 179
    10.2. Parallel transport .................................. 183
    10.3. Charges and gauge transformations ................... 185
    10.4. Functional quantization of gauge theories ........... 188
    10.5. Examples ............................................ 194
    10.6. BRST symmetry and physical states ................... 195
    10.7. Ward-Takahashi identities for Q-symmetry ............ 200
    10.8. Renormalization of nonabelian theories .............. 203
    10.9. The fermionic action and QED again .................. 206
    10.10.The propagator and the effective charge ............. 206
11. Symmetry .................................................. 219
    11.1. Realizations of symmetry ............................ 219
    11.2. Ward-Takahashi identities ........................... 221
    11.3. Ward-Takahashi identities for electrodynamics ....... 223
    11.4. Discrete symmetries ................................. 226
    11.5. Low-energy theorem for Compton scattering ........... 232
12. Spontaneous symmetry breaking ............................. 237
    12.1. Continuous global symmetry .......................... 237
    12.2. Orthogonality of different ground states ............ 242
    12.3. Goldstone's theorem ................................. 244
    12.4. Coset manifolds ..................................... 247
    12.5. Nonlinear sigma models .............................. 249
    12.6. The dynamics of Goldstone bosons .................... 249
    12.7. Summary of results .................................. 253
    12.8. Spin waves .......................................... 254
    12.9. Chiral symmetry breaking in QCD ..................... 255
    12.10.The effective action ................................ 258
    12.11.Effective Lagrangians, unitarity of the S-matrix .... 263
    12.12.Gauge symmetry and the Higgs mechanism .............. 266
    12.13.The standard model .................................. 270
13. Anomalies I ............................................... 281
    13.1. Introduction ........................................ 281
    13.2. Computation of anomalies ............................ 282
    13.3. Anomaly structure: why it cannot be removed ......... 289
    13.4. Anomalies in the standard model ..................... 290
    13.5. The Lagrangian for π0 decay ......................... 294
    13.6. The axial U{1) problem .............................. 295
14. Elements of differential geometry ......................... 299
    14.1. Manifolds, vector fields, and forms ................. 299
    14.2. Geometrical structures on manifolds and gravity ..... 310
          14.2.1. Riemannian structures and gravity ........... 310
          14.2.2. Complex manifolds ........................... 313
    14.3. Cohomology groups ................................... 315
    14.4. Homotopy ............................................ 319
    14.5. Gauge fields ........................................ 324
          14.5.1 Electrodynamics .............................. 324
          14.5.2. The Dirac monopole: A first look ............ 326
          14.5.3. Nonabelian gauge fields ..................... 327
    14.6. Fiber bundles ....................................... 329
    14.7. Applications of the idea of fiber bundles ........... 333
          14.7.1. Scalar fields around a magnetic monopole .... 333
          14.7.2. Gribov  ambiguity ........................... 334
    14.8. Characteristic classes .............................. 336
15. Path Integrals ............................................ 341
    15.1. The evolution kernel as a path integral ............. 341
    15.2. The Schrodinger equation ............................ 344
    15.3. Generalization to fields ............................ 345
    15.4. Interpretation of the path integral ................. 350
    15.5. Nontrivial fundamental group for С .................. 351
    15.6. The case of H2(C) ≠ 0 ............................... 353
16. Gauge theory: configuration space ......................... 359
    16.1. The configuration space ............................. 359
    16.2. The path integral in QCD ............................ 364
    16.3. Instantons .......................................... 366
    16.4. Fermions and index theorem .......................... 369
    16.5. Baryon number violation in the standard model ....... 373
17. Anomalies II .............................................. 377
    17.1. Anomalies and the functional integral ............... 377
    17.2. Anomalies and the index theorem ..................... 379
    17.3. The mixed anomaly in the standard model ............. 383
    17.4. Effective action for flavor anomalies of QCD ........ 384
    17.5. The global or nonperturbative anomaly ............... 386
    17.6. The Wess-Zumino-Witten (WZW) action ................. 390
    17.7. The Dirac determinant in two dimensions ............. 392
18. Finite temperature and density ............................ 399
    18.1. Density matrix and ensemble averages ................ 399
    18.2. Scalar field theory ................................. 402
    18.3. Fermions at finite temperature and density .......... 404
    18.4. A condition on thermal averages ..................... 405
    18.5. Radiation from a heated source ...................... 406
    18.6. Screening of gauge fields: Abelian case ............. 409
    18.7. Screening of gauge fields: Nonabelian case .......... 415
    18.8. Retarded and time-ordered functions ................. 419
    18.9. Physical significance of Im ΠRμ ..................... 422
    18.10.Nonequilibrium phenomena ............................ 424
    18.11.The imaginary time formalism ........................ 430
    18.12.Symmetry restoration at high temperatures ........... 435
    18.13.Symmetry restoration in the standard model .......... 439
19. Gauge theory: Nonperturbative questions ................... 445
    19.1. Confinement and dual superconductivity .............. 445
          19.1.1. The general picture of confinement .......... 445
          19.1.2. The area law for the Wilson loop ............ 447
          19.1.3. Topological vortices ........................ 449
          19.1.4. The nonabelian dual superconductivity ....... 454
    19.2.'t Hooft-Polyakov magnetic monopoles ................. 457
    19.3. The 1/TV-expansion .................................. 462
    19.4. Mesons and baryons in the 1/N expansion ............. 465
          19.4.1. Chiral symmetry breaking and mesons ......... 466
          19.4.2. Baryons ..................................... 468
          19.4.3. Baryon number of the skyrmion ............... 470
          19.4.4. Spin and flavor for skyrmions ............... 472
    19.5. Lattice gauge theory ................................ 475
          19.5.1. The reason for a lattice formulation ........ 475
          19.5.2. Plaquettes and the Wilson action ............ 476
          19.5.3. The fermion doubling problem ................ 479
20. Elements of Geometric Quantization ........................ 485
    20.1. General structures .................................. 485
    20.2. Classical dynamics .................................. 491
    20.3. Geometric quantization .............................. 492
    20.4. Topological features of quantization ................ 496
    20.5. A brief summary of quantization ..................... 499
    20.6. Examples ............................................ 500
          20.6.1. Coherent states ............................. 500
          20.6.2. Quantizing the two-sphere ................... 501
          20.6.3. Compact Kahler spaces of the G/H-type ....... 506
          20.6.4. Charged particle in a monopole field ........ 508
          20.6.5. Anyons or particles of fractional spin ...... 510
          20.6.6. Field quantization, equal-time, and
                  light-cone .................................. 513
          20.6.7. The Chern-Simons theory in 2+1 dimensions ... 515
          20.6.8. #-vacua in a nonabelian gauge theory ........ 522
          20.6.9. Current algebra for the
                  Wess-Zumino-Witten (WZW) model .............. 525
Appendix:Relativistic Invariance .............................. 533

A-l   Poincare algebra ........................................ 533
A-2  Unitary representations of the Poincare algebra .......... 537
A-3  Massive particles ........................................ 538
A-4  Wave functions for spin-zero particles ................... 540
A-5  Wave functions for spin-| particles ...................... 542
A-6  Spin-1 particles ......................................... 543
A-7  Massless particles ....................................... 544
A-8  Position operators ....................................... 545
A-9  Isometries, anyons ....................................... 545
General References ............................................ 549

Index ......................................................... 551


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:19:38 2019. Размер: 17,405 bytes.
Посещение N 2251 c 10.03.2009