Mono-cycle photonics and optical scanning tunneling microscopy (Berlin; Heidelberg, 2005). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаMono-cycle photonics and optical scanning tunneling microscopy: route to femtosecond angstrom technology / ed. by Yamashita M., Shigekawa H., Morita R. - Вerlin; Heidelberg: Springer, 2005. - xx, 389 p. - (Springer series in optical sciences; 99). - ISBN 978-90-5948-3
 

Место хранения: 053 | Институт лазерной физики CO РАН | Новосибирск | Библиотека

Оглавление / Contents
 
1.  Nonlinear Propagation Theory for Few-to-Mono Optical-Cycle 
    Pulses Beyond the Slowly-Varying-Envelope Approximation 
    (SVEA)
        N.Karasawa, Y.Mizuta, X.Fang ............................ 1
    1.1.  Wave Equations for Nonlinear Pulse Propagation ........ 1
          1.1.1.  Introduction .................................. 1
          1.1.2.  Dispersion Terms .............................. 5
          1.1.3.  Nonlinear Terms ............................... 6
          1.1.4.  Induced Phase Modulation ...................... 7
          1.1.5.  Comparison with the Previous Derivation ....... 8
    1.2.  Different Numerical Methods ........................... 9
          1.2.1.  Split-Step Fourier Method .................... 10
          1.2.2.  Finite-Difference in the Frequency Domain 
                  Method ....................................... 12
          1.2.3.  Finite-Difference Time-Domain Method ......... 13
          1.2.4.  Fourier Direct Method ........................ 14
    1.3.  Comparison between Theoretical and Experimental 
          Results .............................................. 24
          1.3.1.  Split-Step Fourier Analysis beyond SVEA ...... 24
          1.3.2.  Finite-Difference Frequency-Domain Analysis .. 34
          1.3.3.  Finite-Difference Time-Domain Analysis ....... 38
          1.3.4.  Analysis by Fourier Direct Method ............ 41
    1.4.  Conclusion ........................................... 60
References ..................................................... 64

2.  Generation of Ultrabroadband Optical Pulses
       M.Yamashita, N.Karasawa, M.Adachi, X.Fang ............... 67
    2.1.  Introduction ......................................... 67
    2.2.  Conventional Glass Fiber Technique Using IPM ......... 68
          2.2.1.  Theoretical Prediction ....................... 68
          2.2.2.  Experiment ................................... 74
    2.3.  Gas-Filled Hollow Fiber Technique using IPM .......... 81
          2.3.1.  Theoretical Prediction ....................... 82
          2.3.2.  Experiment ................................... 85
          2.3.3.  The Oscillatory Spectrum Due to Only IPM ..... 88
    2.4.  Unconventional Glass Fiber Technique Using SPM ....... 91
          2.4.1.  Photonic Crystal Fiber ....................... 91
          2.4.2.  Tapered Fiber ................................ 94
    2.5.  Concluding Remarks ................................... 98
References ..................................................... 99

3.  Active Chirp Compensation for Ultrabroadband Optical 
    Pulses
       M.Yamashita, R.Morita, N.Karasawa ...................... 103
    3.1.  Introduction ........................................ 103
    3.2.  Principle and Theory: Chirp Compensator with 
          Spatial Light Modulator (SLM) ....................... 106
    3.3.  Programmable Chirp Compensator for Generation of 
          Few-Optical Cycle Pulses ............................ 119
          3.3.1.  Grating-Pair-Formed Compensator with SLM .... 119
          3.3.2.  Prism-Pair-Formed Compensator with SLM ...... 141
    3.4.  Conclusion .......................................... 147
References .................................................... 149

4.  Amplitude and Phase Characterization of Few-to-Mono 
    Optical-Cycle Pulses
       R.Morita, K.Yamane, Z.Zhang ............................ 153
    4.1.  Introduction ........................................ 153
    4.2.  Experimental and Theoretical Demonstration of 
          Limitation in Fringe-Resolved Autocorrelation 
          (FRAC) Measurements ................................. 156
          4.2.1.  Equations for FRAC Signals .................. 156
          4.2.2.  Numerical Analysis: Deviation of Practical 
                  FRAC Signal from Ideal FRAC Signal .......... 158
          4.2.3.  Experiments ................................. 162
          4.2.4.  Comparison between TL-Pulse FRAC Signals 
                  Based on Measured and Corresponding 
                  Gaussian Spectra ............................ 163
          4.2.5.  Experimental Comparison between Directly-
                  Measured and Modified-SPIDER-Retrieved 
                  FRAC Signals ................................ 165
    4.3.  Frequency Resolved Optical Gating (FROG) ............ 166
          4.3.1.  Principle ................................... 166
          4.3.2.  Apparatus and Characteristcs ................ 171
    4.4.  Spectral Interferometry for Direct Electric-Field
          Reconstruction (SPIDER) ............................. 176
          4.4.1.  Principle ................................... 176
          4.4.2.  Apparatus and Characteristics ............... 180
    4.5.  Modified SPIDER ..................................... 185
          4.5.1.  Principle and Effect of Parameter Error ..... 185
          4.5.2.  Apparatus and Characteristics ............... 186
    4.6.  Comparison and Characteristics ...................... 194
    4.7.  Conclusion .......................................... 196
References .................................................... 197

5.  Feedback Field Control for Optical Pulse Generation
    in the Monocycle Region
       M.Yamashita, K.Yamane, Z.Zhang, M.Adachi, 
       R.Morita ............................................... 199
    5.1.  Basic Concept: Combination of Spectral Phase 
          Compensation and Characterization ................... 199
    5.2.  Feedback Spectral-Phase Control Technique ........... 201
          5.2.1.  Conventional Glass Fiber Experiment ......... 201
          5.2.2.  Unconventional Glass Fiber Experiment ....... 213
          5.2.3.  Gas-Filled Hollow Fiber Experiment .......... 224
    5.3.  Characterization of Monocycle-Like Optical Pulses
          Based on Wigner Distribution Function ............... 238
    5.4.  Conclusion .......................................... 246
References .................................................... 247

6.  Field Manipulation of Ultrabroadband Optical Pulses
       R.Morita, Y.Toda ....................................... 251
    6.1.  Principle and Theory ................................ 251
    6.2.  Two-Color Beam Generation with Tunable THz-Pulse 
          Trains .............................................. 256
    6.3.  Three-Color Beam Generation with Tunable THz-Pulse 
          Trains .............................................. 259
    6.4.  Application for Vibrational Motion Control of 
          Molecules ........................................... 263
          6.4.1.  Principle and Theory ........................ 263
          6.4.2.  Experiment .................................. 274
    6.5.  Future Direction .................................... 280
References .................................................... 282

7.  Fundamental of Laser-Assisted Scanning Tunneling
    Microscopy (STM)
       0.Takeuchi, H.Shigekawa ................................ 285
    7.1.  Introduction ........................................ 285
    7.2.  Potentialities of Laser Combined STM ................ 286
    7.3.  Fundamental of Scanning Probe Microscopy ............ 289
          7.3.1.  How to Visualize the Nanoscopic World ....... 289
          7.3.2.  Tunnel Current as a Probe Signal ............ 292
          7.3.3.  Scanning Tunneling Spectroscopy ............. 294
          7.3.4.  Characteristic of the STM Measurement 
                  System ...................................... 295
    7.4.  Previous STM Studies in Various Fields .............. 299
    7.5.  Development of Laser-Assisted STM ................... 307
          7.5.1.  Performance of Optical Measurements ......... 307
          7.5.2.  Combination of STM with Optical Methods ..... 308
          7.5.3.  How to Combine the Two Techniques? .......... 309
          7.5.4.  Specific Issues in Combining Light 
                  Irradiation and STM ......................... 312
References .................................................... 315

8.  Spatially-Resolved Surface Photovoltage Measurement
       O.Takeuchi, H.Shigekawa ................................ 317
    8.1.  Background .......................................... 317
    8.2.  Surface Photovoltage (SPV) .......................... 318
    8.3.  Macroscopic Measurement of SPV ...................... 321
    8.4.  Photovoltage and Photocurrent Measurement by STM .... 322
    8.5.  Light-Modulated Scanning Tunneling Spectroscopy ..... 327
    8.6.  Point Spectroscopy .................................. 329
    8.7.  Nanoscale Spatial Variation of SPV .................. 331
    8.8.  Conclusion .......................................... 333
References .................................................... 334

9.  Atomic-Level Surface Phenomena Controlled by 
    Femtosecond Optical Pulses
       D.N.Futaba ............................................. 335
    9.1.  Introduction ........................................ 335
    9.2.  Femtosecond Pulse Pair Controlled Phenomena at 
          Surfaces ............................................ 336
          9.2.1.  Experiment: Site-Selective Silicon Adatoni 
                  Desorption Using Femtosecond Laser Pulse 
                  Pairs and STM ............................... 338
          9.2.2.  Interpretation .............................. 342
    9.3.  Future Directions ................................... 345
References .................................................... 345

10. Femtosecond-Time-Resolved Scanning Tunneling Microscopy
       O.Takeuchi, H.Shigekawa ................................ 349
    10.1. Femtosecond-Angstrom Technology ..................... 349
    10.2. Previous Studies in This Field ...................... 350
    10.3. Fundamentals of the Pulse-Pair-Excited STM .......... 353
    10.4. Design of the Measurement System .................... 356
    10.5. Shaker Method ....................................... 358
    10.6. Performance of the System ........................... 359
          10.6.1. Discussion of the Interference Effect ....... 361
    10.7. Time-Resolved STM Experiment on GaNAs ............... 363
          10.7.1. Sample Preparation .......................... 363
          10.7.2. Analysis by the Optical Pump-Probe 
                  Technique ................................... 365
          10.7.3. Results Obtained by the SPPX-STM ............ 366
          10.7.4. Localized Sensitivity of Time-Resolved 
                  Tunnel Current Signal ....................... 368
          10.7.5. Relative Intensity of Pump and Probe 
                  Pulses ...................................... 369
          10.7.6. Accurate Fitting Procedure of Time-
                  Resolved Current Signal ..................... 372
    10.8. Conclusion .......................................... 376
References .................................................... 377

11. Outlook
       M.Yamashita, H.Shigekawa, R.Monta ...................... 379
References .................................................... 382

Index ......................................................... 385


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:19:36 2019. Размер: 15,229 bytes.
Посещение N 2162 c 10.03.2009