1. Nonlinear Propagation Theory for Few-to-Mono Optical-Cycle
Pulses Beyond the Slowly-Varying-Envelope Approximation
(SVEA)
N.Karasawa, Y.Mizuta, X.Fang ............................ 1
1.1. Wave Equations for Nonlinear Pulse Propagation ........ 1
1.1.1. Introduction .................................. 1
1.1.2. Dispersion Terms .............................. 5
1.1.3. Nonlinear Terms ............................... 6
1.1.4. Induced Phase Modulation ...................... 7
1.1.5. Comparison with the Previous Derivation ....... 8
1.2. Different Numerical Methods ........................... 9
1.2.1. Split-Step Fourier Method .................... 10
1.2.2. Finite-Difference in the Frequency Domain
Method ....................................... 12
1.2.3. Finite-Difference Time-Domain Method ......... 13
1.2.4. Fourier Direct Method ........................ 14
1.3. Comparison between Theoretical and Experimental
Results .............................................. 24
1.3.1. Split-Step Fourier Analysis beyond SVEA ...... 24
1.3.2. Finite-Difference Frequency-Domain Analysis .. 34
1.3.3. Finite-Difference Time-Domain Analysis ....... 38
1.3.4. Analysis by Fourier Direct Method ............ 41
1.4. Conclusion ........................................... 60
References ..................................................... 64
2. Generation of Ultrabroadband Optical Pulses
M.Yamashita, N.Karasawa, M.Adachi, X.Fang ............... 67
2.1. Introduction ......................................... 67
2.2. Conventional Glass Fiber Technique Using IPM ......... 68
2.2.1. Theoretical Prediction ....................... 68
2.2.2. Experiment ................................... 74
2.3. Gas-Filled Hollow Fiber Technique using IPM .......... 81
2.3.1. Theoretical Prediction ....................... 82
2.3.2. Experiment ................................... 85
2.3.3. The Oscillatory Spectrum Due to Only IPM ..... 88
2.4. Unconventional Glass Fiber Technique Using SPM ....... 91
2.4.1. Photonic Crystal Fiber ....................... 91
2.4.2. Tapered Fiber ................................ 94
2.5. Concluding Remarks ................................... 98
References ..................................................... 99
3. Active Chirp Compensation for Ultrabroadband Optical
Pulses
M.Yamashita, R.Morita, N.Karasawa ...................... 103
3.1. Introduction ........................................ 103
3.2. Principle and Theory: Chirp Compensator with
Spatial Light Modulator (SLM) ....................... 106
3.3. Programmable Chirp Compensator for Generation of
Few-Optical Cycle Pulses ............................ 119
3.3.1. Grating-Pair-Formed Compensator with SLM .... 119
3.3.2. Prism-Pair-Formed Compensator with SLM ...... 141
3.4. Conclusion .......................................... 147
References .................................................... 149
4. Amplitude and Phase Characterization of Few-to-Mono
Optical-Cycle Pulses
R.Morita, K.Yamane, Z.Zhang ............................ 153
4.1. Introduction ........................................ 153
4.2. Experimental and Theoretical Demonstration of
Limitation in Fringe-Resolved Autocorrelation
(FRAC) Measurements ................................. 156
4.2.1. Equations for FRAC Signals .................. 156
4.2.2. Numerical Analysis: Deviation of Practical
FRAC Signal from Ideal FRAC Signal .......... 158
4.2.3. Experiments ................................. 162
4.2.4. Comparison between TL-Pulse FRAC Signals
Based on Measured and Corresponding
Gaussian Spectra ............................ 163
4.2.5. Experimental Comparison between Directly-
Measured and Modified-SPIDER-Retrieved
FRAC Signals ................................ 165
4.3. Frequency Resolved Optical Gating (FROG) ............ 166
4.3.1. Principle ................................... 166
4.3.2. Apparatus and Characteristcs ................ 171
4.4. Spectral Interferometry for Direct Electric-Field
Reconstruction (SPIDER) ............................. 176
4.4.1. Principle ................................... 176
4.4.2. Apparatus and Characteristics ............... 180
4.5. Modified SPIDER ..................................... 185
4.5.1. Principle and Effect of Parameter Error ..... 185
4.5.2. Apparatus and Characteristics ............... 186
4.6. Comparison and Characteristics ...................... 194
4.7. Conclusion .......................................... 196
References .................................................... 197
5. Feedback Field Control for Optical Pulse Generation
in the Monocycle Region
M.Yamashita, K.Yamane, Z.Zhang, M.Adachi,
R.Morita ............................................... 199
5.1. Basic Concept: Combination of Spectral Phase
Compensation and Characterization ................... 199
5.2. Feedback Spectral-Phase Control Technique ........... 201
5.2.1. Conventional Glass Fiber Experiment ......... 201
5.2.2. Unconventional Glass Fiber Experiment ....... 213
5.2.3. Gas-Filled Hollow Fiber Experiment .......... 224
5.3. Characterization of Monocycle-Like Optical Pulses
Based on Wigner Distribution Function ............... 238
5.4. Conclusion .......................................... 246
References .................................................... 247
6. Field Manipulation of Ultrabroadband Optical Pulses
R.Morita, Y.Toda ....................................... 251
6.1. Principle and Theory ................................ 251
6.2. Two-Color Beam Generation with Tunable THz-Pulse
Trains .............................................. 256
6.3. Three-Color Beam Generation with Tunable THz-Pulse
Trains .............................................. 259
6.4. Application for Vibrational Motion Control of
Molecules ........................................... 263
6.4.1. Principle and Theory ........................ 263
6.4.2. Experiment .................................. 274
6.5. Future Direction .................................... 280
References .................................................... 282
7. Fundamental of Laser-Assisted Scanning Tunneling
Microscopy (STM)
0.Takeuchi, H.Shigekawa ................................ 285
7.1. Introduction ........................................ 285
7.2. Potentialities of Laser Combined STM ................ 286
7.3. Fundamental of Scanning Probe Microscopy ............ 289
7.3.1. How to Visualize the Nanoscopic World ....... 289
7.3.2. Tunnel Current as a Probe Signal ............ 292
7.3.3. Scanning Tunneling Spectroscopy ............. 294
7.3.4. Characteristic of the STM Measurement
System ...................................... 295
7.4. Previous STM Studies in Various Fields .............. 299
7.5. Development of Laser-Assisted STM ................... 307
7.5.1. Performance of Optical Measurements ......... 307
7.5.2. Combination of STM with Optical Methods ..... 308
7.5.3. How to Combine the Two Techniques? .......... 309
7.5.4. Specific Issues in Combining Light
Irradiation and STM ......................... 312
References .................................................... 315
8. Spatially-Resolved Surface Photovoltage Measurement
O.Takeuchi, H.Shigekawa ................................ 317
8.1. Background .......................................... 317
8.2. Surface Photovoltage (SPV) .......................... 318
8.3. Macroscopic Measurement of SPV ...................... 321
8.4. Photovoltage and Photocurrent Measurement by STM .... 322
8.5. Light-Modulated Scanning Tunneling Spectroscopy ..... 327
8.6. Point Spectroscopy .................................. 329
8.7. Nanoscale Spatial Variation of SPV .................. 331
8.8. Conclusion .......................................... 333
References .................................................... 334
9. Atomic-Level Surface Phenomena Controlled by
Femtosecond Optical Pulses
D.N.Futaba ............................................. 335
9.1. Introduction ........................................ 335
9.2. Femtosecond Pulse Pair Controlled Phenomena at
Surfaces ............................................ 336
9.2.1. Experiment: Site-Selective Silicon Adatoni
Desorption Using Femtosecond Laser Pulse
Pairs and STM ............................... 338
9.2.2. Interpretation .............................. 342
9.3. Future Directions ................................... 345
References .................................................... 345
10. Femtosecond-Time-Resolved Scanning Tunneling Microscopy
O.Takeuchi, H.Shigekawa ................................ 349
10.1. Femtosecond-Angstrom Technology ..................... 349
10.2. Previous Studies in This Field ...................... 350
10.3. Fundamentals of the Pulse-Pair-Excited STM .......... 353
10.4. Design of the Measurement System .................... 356
10.5. Shaker Method ....................................... 358
10.6. Performance of the System ........................... 359
10.6.1. Discussion of the Interference Effect ....... 361
10.7. Time-Resolved STM Experiment on GaNAs ............... 363
10.7.1. Sample Preparation .......................... 363
10.7.2. Analysis by the Optical Pump-Probe
Technique ................................... 365
10.7.3. Results Obtained by the SPPX-STM ............ 366
10.7.4. Localized Sensitivity of Time-Resolved
Tunnel Current Signal ....................... 368
10.7.5. Relative Intensity of Pump and Probe
Pulses ...................................... 369
10.7.6. Accurate Fitting Procedure of Time-
Resolved Current Signal ..................... 372
10.8. Conclusion .......................................... 376
References .................................................... 377
11. Outlook
M.Yamashita, H.Shigekawa, R.Monta ...................... 379
References .................................................... 382
Index ......................................................... 385
|