Moliton A. Optoelectronics of molecules and polymers (New York, 2006). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаMoliton A. Optoelectronics of molecules and polymers. - New York: Springer, 2006. - xv, 497 p.: ill. - (Springer series in optical sciences; 104). - ISBN 0-387-23710-0
 

Место хранения: 053 | Институт лазерной физики CO РАН | Новосибирск | Библиотека

Оглавление / Contents
 
Preface by Richard H. Friend .................................. vii
 
 List of abbreviations ......................................... ix
 
 Introduction .................................................. xi
 
 Part One: Concepts: Electronic and optical
 processes in organic solids
 
 Chapter I: Band and electronic structures in
 regular 1-dimensional media .................................... 3
 
I.   An introduction to approximations of weak and 
     strong bonds ............................................... 3
     1. Materials with weak bonds ............................... 3
     2. Materials with strong bonds ............................. 4
II.  Band Structure in weak bonds ............................... 6
     1. Prior result for zero order 
        approximation ........................................... 6
     2. Physical origin of forbidden bands ...................... 6
     3. Simple estimation of the size of the 
        forbidden band .......................................... 8
III. Floquet's theorem: wavefunctions for strong 
     bonds ...................................................... 9
     1. Form of the resulting potential ......................... 9
     2. The form of the wavefunction ........................... 10
     3. Floquet's theorem: effect of potential 
        periodicity on wavefunction form ....................... 11
IV.  A study on energy ......................................... 12
     1. Defining equations (with x ≡ r: 1 — D) ................. 12
     2. Calculation of energy for a chain of N 
        atoms .................................................. 13
     3. Additional comments: physical significance 
        of terms (E0 — α) and β simple                
        calculation of E; and the appearance of 
        allowed and forbidden bands in strong 
        bonds .................................................. 16
V.   1-D crystal and the distorted chain ....................... 19
     1. AB type crystal ........................................ 19
     2. The distorted chain .................................... 20
VI.  Density function and its application, the 
     metal insulator transition and calculation of 
     Erelax ..................................................... 22
     1. State density functions ................................ 22
     2. Filling up zones and Peierls insulator-
        metal transition ....................................... 24
     3. Principle of the calculation of Erelax 
        for a distorted chain .................................. 25
VII. Practical example: calculation of wavetunction 
     energy levels, orbital density function and 
     band filling for a regular chain of atoms ................. 26
     1. Limits of variation ink ................................ 26
     2. Representation of energy and the orbital 
        density function using N = 8 ........................... 26
     3. Wavefunction forms for bonding and 
        antibonding states ..................................... 27
     4. Generalisation regarding atomic chain 
        states ................................................. 30
VIII.Conclusion ................................................ 30
 
 Chapter II: Electron and band structure ....................... 33
 
I.  Introduction ............................................... 33
II. Going from 1-D to 3-D ...................................... 34
    1. 3-D General expression of permitted 
       energy .................................................. 34
    2. Expressions for effective mass, band size 
       and mobility ............................................ 35
III.3-D covalent crystal from a molecular model: 
    sp3 hybrid states at nodal atoms ........................... 36
    1. General notes ........................................... 36
    2. Independent bonds: formation of molecular
       orbitals ................................................ 38
    3. Coupling of molecular orbitals and band
       formation ............................................... 40
IV. Band theory limts and the origin of levels 
    and bands from localised states ............................ 41
    1. Influence of defaults on evolution of band
       structure and the introduction of 
       'localised levels' ...................................... 41
    2. The effects of electronic repulsions, 
       Hubbard's bands and the insulator-metal 
       transition .............................................. 43
    3. Effect of geometrical disorder and 
       Anderson localisation ................................... 47
V.  Conclusion ................................................. 57
 
 Chapter III: Electron and band structures of 
    'perfect' organic solids ................................... 59
 
I.  Introduction: organic solids ............................... 59
    1. Context ................................................. 59
    2. Generalities ............................................ 59
    3. Definition of conjugated materials; an 
       aide-mémoire for physicians and 
       electricians ............................................ 62
II. Electronic structure of organic intrinsic 
     solids: π-conjugated polymers ............................. 63
    1. Degenerate π-conjugated polymers ........................ 63
    2. Band scheme for a non-degenerate n-
       conjugated polymer: poly(para-phenylene) ................ 65
III.Electronic structure of organic intrinsic 
    solids: small molecules .................................... 68
    1. Evolution of energy levels in going from 
       an isolated chain to a system of solid 
       state condensed molecules ............................... 68
    2. Energy level distribution in Alq3 ....................... 69
    3. Fullerene electronic levels and states................... 70
IV. Conclusion: energy levels and electron 
    transport .................................................. 74
 
 Chapter IV: Electron and band structures of
 'real' organic solids ......................................... 77
 
I.  Introduction: 'real' organic solids ........................ 77
II. Lattice-charge coupling—polarons ........................... 77
    1. Introduction ............................................ 77
    2. Polarons ................................................ 78
    3. Model of molecular crystals ............................. 79
    4. Energy spectrum of small polaron ........................ 83
    5. Polarons in π-conjugated polymers ....................... 85
    6. How do we cross from polaron-exciton to
       polaron? ................................................ 87
    7. Degenerate π-conjugated polymers and 
       solitons ................................................ 88
III.Towards a complete band scheme ............................ 90
    1. Which effects can intervene? ............................ 90
    2. Complete band scheme accumulating 
       different possible effects .............................. 91
    3. Alq3 and molecular crystals ............................. 93
IV. Conclusion ................................................. 95
 
 Chapter V: Conduction in delocalised, localised
 and polaronic states .......................................... 99
 
I.  Introduction ............................................... 99
II. General theories of conduction in delocalised 
     states ................................................... 100
    1. General results of conductivity in a real 
       crystal: limits of classical theories .................. 100
    2. Electrical conduction in terms of 
       mobilities and the Kubo-Greenwood 
       relationship: reasoning in reciprocal 
       space and energy space for delocalised
       states ................................................. 101
III.Conduction in delocalised band states: 
    degenerate and non-degenerate organic 
    solids .................................................... 103
    1. Degenerate systems ..................................... 103
    2. Non-degenerate systems: limits of 
       applicability of the conduction theory 
       in bands of delocalised states for 
       systems with large or narrow bands 
       mobility condition) .................................... 105
IV. Conduction in localised state bands ....................... 109
    1. System 1: Non-degenerated regime; 
       conductivity in the tail band .......................... 110
    2. System 2: degenerate regime; 
       conductivity in deep localised states .................. 111
V.  Transport mechanisms with polarons ........................ 116
    1. Displacements in small polaron bands and      
       displacements by hopping ............................... 116
    2. Characteristics of hopping by small 
       polarons ............................................... 117
    3. Precisions for the 'semi-classical' 
       theory: transition probabilities ....................... 120
    4. Relationships for continuous 
       conductivity through polaron transport ................. 122
    5. Conduction in 3D in π-conjugated 
       polymers ............................................... 124
VI. Other envisaged transport mechanisms ...................... 128
    1. Sheng's granular metal model ........................... 128
    2. Efros—Shklovskii's model from Coulombic
       effects ................................................ 128
    3. Conduction by hopping from site to site 
       in a percolation pathway ............................... 128
    4. Kaiser's model for conduction in a 
       heterogeneous structure ................................ 129
VII.Conclusion: real behaviour ................................ 129
    1. A practical guide to conducting 
       polymers ............................................... 129
    2. Temperature dependence analysed using the
       parameter w = —[(δ In ρ)/δ
       In T] .................................................. 131
 
 Chapter VI:  Electron transport properties ................... 133
 
I.  Introduction .............................................. 133
II. Basic mechanisms .......................................... 133
    1. Injection levels ....................................... 133
    2. Three basic mechanisms ................................. 134
III.Process A: various (emission) currents 
    produced by electrodes .................................... 135
    1. Rectifying contact (blocking metal 
       insulator) ............................................. 135
    2. Thermoelectronic emission (T ≠ 0; Ea=0) ................ 136
    3. Field effect emission (Shottky): Ea 
       is 'medium intense' .................................... 136
    4. Tunnelling effect emissions and 
       Fowler-Nordheim's equation ............................. 137
IV. Process В (simple injection): ohmic contact 
    and current limited by space charge ....................... 138
    1. Ohmic contact (electron injection) ..................... 138
    2. The space charge limited current law and 
       saturation current (Js) for simple 
       injection in insulator without traps.................... 139
    3. Transitions between regimes ............................ 143
    4. Insulators with traps and characteristics
       of trap levels ......................................... 144
    5. Expression for current density due to one
       carrier type (JsP) with traps at one 
       discreet level (Et); effective mobility ................ 147
    6. Deep level traps distributed according to 
       Gaussian or exponential laws ........................... 151
V.  Double injection and volume controlled 
    current: mechanism С in Figure VI-2 ....................... 154
    1. Introduction: differences in properties 
       of organic and inorganic solids ........................ 154
    2. Fundamental equations for planar double 
       injection (two carrier types) when both 
       currents are limited by space charge: 
       form of resulting current JVCC (no trap 
       nor recombination centres) ............................. 155
    3. Applications ........................................... 157
VI. The particular case of conduction by the 
    Poole-Frenkel effect ...................................... 159
    1. Coulombic traps ........................................ 160
    2. Conduction due to Poole-Frenkel effect
       (as opposed to Schottky effect) ........................ 160
  
 Chapter VII: Optical processes in molecular and 
 macromolecular solids ........................................ 163
 
I.  Introduction .............................................. 163
II. Matrix effects due to insertion of atoms 
    with incomplete internal electronic levels ................ 164
    1. Electronic configuration of transition 
       elements and rare earths ............................... 164
    2. Incorporation of transition metals and 
       rare earths into dielectric or a 
       semiconductor matrix: effects on energy 
       levels ................................................. 165
    3. Transitions studied for atoms with 
       incomplete layers inserted in a matrix ................. 167
III.Classic optical applications using 
    transition and rare earth elements ........................ 171
    1. Electroluminescence in passive matrices ................ 171
    2. Insertion into semiconductor matrix .................... 172
    3. Light amplification: erbium lasers ..................... 173
IV. Molecular edifices and their general 
    properties ................................................ 174
    1. Aide mचmoire: basic properties ......................... 174
    2. Selection rule with respect to orbital 
       parities for systems with centre of 
       symmetry ............................................... 176
    3. More complicated molecules: classical 
       examples of existing chromophores ...................... 177
V.  Detailed description of the absorption and 
    emission processes in molecular solids .................... 179
    1. Electron-lattice coupling effects during 
       electron transitions ................................... 179
    2. Selection rules and allowed transitions ................ 180
    3. Modified Jablonsky diagram and 
       modification of selection rules: 
       fluorescence and phosphorescence ....................... 181
    4. Experimental results: discussion ....................... 183
VI. Excitons .................................................. 185
    1. Introduction ........................................... 185
    2. Wannier and charge transfer excitons ................... 186
    3. Frenkel excitons ....................................... 188
    4. States, energy levels and transitions in 
       physical dimers ........................................ 189
    5. System containing an infinite number of 
       interacting molecules and exciton band: 
       Davidov displacement and breakdown ..................... 192
    6. Aggregates ............................................. 194
    7. Forster and Dexter mechanisms for 
       transfer of electron excitation energy ................. 195
 
 Part Two: Components: OLEDs, photovoltaic cells
    and electro-optical modulators
 
 Chapter VIII:Fabrication and characterisation of
 molecular and macromolecular optoelectronic
 components ................................................... 201
 
I.  Deposition methods ........................................ 201
    1. Spin coating ........................................... 201
    2. Vapour phase deposition ................................ 202
    3. Polymerisation in the vapour phase 
       (VDP method) ........................................... 203
    4. Film growth during vapour deposition: 
       benefits due to deposition assisted by 
       ion beams .............................................. 204
    5. Comment: substrate temperature effects ................. 209
II. Fabrication methods: OLEDs and optical 
    guides for modulator arms ................................. 210
    1. OLED fabrication ....................................... 210
    2. Fabrication of modulator guides/arms 
       from polymers .......................................... 212
III.Photometric characterisation of organic 
    LEDs (OLEDs or PLEDs) ..................................... 217
    1. General definitions .................................... 217
    2. Internal and external fluxes and 
       quantum yields: emissions inside and 
       outside of components .................................. 221
    3. Measuring luminance and yields with a 
       photodiode ............................................. 226
IV. Characterisation of polymer based linear 
    wave guides ............................................... 232
    1. Measuring transversally diffused light ................. 232
    2. Loss analyses using 'Cut - Back' and 
       'Endface Coupling' methods ............................. 233
 
 Chapter IX:  Organic structures and materials in 
 optoelectronic emitters ...................................... 235
 
I.   Introduction ............................................. 235
II.  How CRTs work ............................................ 235
III. Electroluminescent inorganic diodes ...................... 236
     1. How they work ......................................... 236
     2. Display applications .................................. 237
     3. Characteristic parameters ............................. 237
     4. In practical terms .................................... 238
IV. Screens based on liquid crystals ......................... 239
    1. General points ......................................... 239
    2. How liquid crystal displays work ....................... 240
    3. LCD screen structure and the role of 
       polymers ............................................... 242
    4. Addressing in LCD displays ............................. 243
    5. Conclusion ............................................. 244
V.  Plasma screens ............................................ 244
VI. Micro-point screens (field emission displays 
    (FED)) .................................................... 245
VII.Electroluminescent screens ................................ 246
    1. General mechanism ...................................... 246
    2. Available transitions in an inorganic 
       phosphor ............................................... 247
    3. Characteristics of inorganic phosphors 
       from groups II-VI ...................................... 249
    4. Electroluminescent think film displays: 
       how they work with alternating currents ................ 250
    5. Electroluminescent devices operating 
       under direct current conditions ........................ 251
VIII.Organic (OLED) and polymer (PLED)
    electroluminescent diodes ................................. 253
    1. Brief history and resume ............................... 253
    2. The two main developmental routes ...................... 253
    3. How OLEDs function and their interest .................. 254
 
 Chapter X: Electroluminescent organic
 diodes ....................................................... 257
 
I.  Introduction .............................................. 257
II. Comparing electronic injection and 
    transport models with experimental 
    results ................................................... 258
    1. General points: properties and methods 
       applied to their study ................................. 258
    2. Small molecules (Alq3) ................................. 259
    3. Polymers ............................................... 267
III.Strategies for improving organic LEDs and 
    yields .................................................... 272
    1. Scheme of above detailed processes ..................... 272
    2. Different types of yields .............................. 273
    3. Various possible strategies to improve 
       organic LED performances ............................... 274
IV. Adjusting electronic properties of organic 
    solids for electroluminescent applications ................ 276
    1. A brief justification of n- and p-type 
       organic conductivity ................................... 276
    2. The problem of equilibrating electron 
       and hole injection currents ............................ 277
    3. Choosing materials for electrodes and 
       problems encountered with interfaces ................... 277
    4. Confinement layers and their interest .................. 279
V.  Examples of organic multi-layer structures ................ 279
    1. Mono-layer structures and the origin of 
       their poor performance ................................. 279
    2. The nature of supplementary layers ..................... 280
    3. Classic examples of the effects of 
       specific organic layers ................................ 280
    4. Treatment of the emitting zone in 
       contact with the anode ................................. 284
VI. Modification of optical properties of 
    organic solids for applications ........................... 285
    1. Adjusting the emitted wavelength ....................... 285
    2. Excitation energy transfer mechanisms 
       in films doped with fluorescent or 
       phosphorescent dyes .................................... 286
    3. Circumnavigating selection rules: 
       recuperation of non-radiative triplet 
       excitons ............................................... 288
    4. Energy transfer with rare earths and 
       infrared LEDs .......................................... 290
    5. Microcavities .......................................... 292
    6. Electron pumping and the laser effect .................. 292
VII.Applications in the field of displays: 
    flexible screens .......................................... 294
    1. The advantages ......................................... 294
    2. The problem of ageing .................................. 294
    3. The specific case of white diodes ...................... 296
    4. The structure of organic screens ....................... 296
    5. A description of the fabrication 
       processes used for organic RGB pixels .................. 298
    6. Emerging organic-based technologies: 
       flexible electronic 'pages' ............................ 304
VIII.The prospective and actual production at 
    2002 ...................................................... 306
 IX.Conclusion ................................................ 309
 X.Actual state-of-the-art and prospectives ................... 310
 
 Chapter XI:  Organic photovoltaic devices .................... 313
 
I.  Principles and history of organic based 
    photovoltaics ............................................. 313
    1. General points: the photovoltaic effect ................ 313
    2. Initial attempts using organic 
       materials: the phthalocyanines ......................... 316
    3. Solar cells based on pentacene doped 
       with iodine ............................................ 318
    4. The general principle of Graetzel and 
       current organic solar cells ............................ 320
II. π-Conjugated materials under development 
    for the conversion of solar energy ........................ 321
    1. Metal-Insulator-Metal structures ....................... 321
    2. How bilayer hetero-structures work and 
       their limits ........................................... 322
    3. Volume heterojunctions ................................. 325
III.Additional informations about photovoltaic 
    cells and organic components .............................. 328
    1. Discussion about mechanisms leading to 
       the generation of charge carriers in 
       organics ............................................... 328
    2. Electric circuit based on an irradiated 
       pn-junction; photovoltaic parameters ................... 330
    3. Circuit equivalent to a solar cell ..................... 334
    4. Possible limits ........................................ 336
    5. Examples; routes under study and the 
       role of various parameters ............................. 337
    6. Conclusion ............................................. 339
 
 Chapter XII: The origin of non-linear optical 
 properties ................................................... 341
 
I.  Introduction: basic equations for electro-
    optical effects ........................................... 341
    1. Context ................................................ 341
    2. Basic equations used in non-linear 
       optics ................................................. 341
II. The principle of phase modulators and 
    organic materials ......................................... 343
    1. Phase modulator ........................................ 343
    2. The advantages of organic materials .................... 345
    3. Examples of organic donor-acceptor non-
       linear optical systems ................................. 346
    4. General structure of molecules used in 
       non-linear optics ...................................... 348
III.The molecular optical diode ............................... 349
    1. The centrosymmetric molecule ........................... 349
    2. Non-centrosymmetric molecules .......................... 350
    3. Conclusion ............................................. 351
IV. Phenomenological study of the Pockels 
    effect in donor-spacer-acceptor systems ................... 353
    1. Basic configuration .................................... 353
    2. Fundamental equation for a dynamic 
       system ................................................. 355
    3. Expressions for polarisability and 
       susceptibility ......................................... 355
    4. Expression for the indice—and the 
       insertion of the electro-optical 
       coefficient r .......................................... 356
V.  Organic electro-optical modulators and 
    their basic design ........................................ 358
    1. The principal types of electro-optical 
       modulators ............................................. 358
    2. Figures of merit ....................................... 359
    3. The various organic systems available 
       for use in electro-optical modulators .................. 361
VI. Techniques such as etching and polyimide 
    polymer structural characteristics ........................ 363
    1. Paired materials: polyimide/DR 1 ....................... 363
    2. Device dimensions—resorting to 
       lithography ............................................ 364
    3. Etching ................................................ 365
    4. Examples of polymer based structures ................... 367
VII.Conclusion ................................................ 368
 
 Appendices
 
 Appendix A-l: Atomic and molecular
   orbitals ................................................... 373
I.  Atomic and molecular orbitals ............................. 373
    1. Atomic s- and p-orbitals ............................... 373
    2. Molecular orbitals ..................................... 376
    3. σ- and π-bonds ......................................... 380
II. The covalent bond and its 
    hybridisation ............................................. 381
    1. Hybridisation of atomic orbitals ....................... 381
    2. sp3 Hybridisation ...................................... 383
 
 Appendix A-2: Representation of states in a
    chain of atoms ............................................ 389
I.  A chain of atoms exhibiting σ-orbital 
    overlapping ............................................... 389
    1. σ-orbitals and a compliment to the 
       example of 8 atoms in a chain .......................... 389
    2. General representation of states in 
       a chain of overlapping σ s-orbitals .................... 391
    3. General representation of states in 
       a chain of overlapping a p-orbitals .................... 393
II. π Type overlapping of p-orbitals in a 
    chain of atoms: π-p- and π*-p-orbitals .................... 393
III.σ-s- and σ-p-bonds in chains of atoms ..................... 394
IV. Comments .................................................. 395
    1. The Bloch function ..................................... 395
    2. Expression for the effective mass 
       (m*) ................................................... 396
 
 Appendix A-3: Electronic and optical
    properties of fullerene-C60 in the solid
    (film) state .............................................. 397
I.  Electronic properties of fullerene-C60 .................... 397
II. Optical properties and observed 
    transitions ............................................... 401
 
 Appendix A-4: General theory of conductivity
    for a regular lattice ..................................... 403
I.  Electron transport effected by an 
    external force and its study .............................. 403
    1. Effect of force on electron movement 
       and reasoning within reciprocal 
       space .................................................. 403
    2 Boltzmann's transport equation .......................... 404
II. State density function, carrier flux 
    and current density in the reciprocal 
    space ..................................................... 406
    1. General expressions for fluxes of 
       particles .............................................. 406
    2. Expressions for the state density 
       function ............................................... 406
    3. Expression for flux .................................... 408
    4. Expression for current density in 
       reciprocal space ....................................... 408
III.Different expressions for the current 
    density ................................................... 409
    1. Usual expression for current 
       density in energy space ................................ 409
    2. Studies using various examples ......................... 410
    3. Expressions for mobility ............................... 412
    4. The Kubo - Greenwood expression for  
       conductivity ........................................... 413
IV. Complementary comments .................................... 414
    1. Concerning the approximation of the 
       effective mass and isotropic 
       diffusions ............................................. 414
    2. General laws for changes in mobility 
       with temperature ....................................... 415
 
 Appendix A-5: General theory of
    conductivity in localised states .......................... 417
I.  Expression for current intensity 
    associated with hopping transport ......................... 417
    1. Transcribing transport phenomena 
       into equations ......................................... 417
    2. Calculating the current intensity 
       due to hopping mechanisms .............................. 419
II. Expression for current density and 
    thermally activated mobility .............................. 419
    1. Expression for current density 
       relative to transport at a 
       particular energy level ................................ 419
    2. Generalisation of the form of Kubo-
       Greenwood conductivity ................................. 420
    3. Thermally activated mobility ........................... 420
III.Approximations for localised and 
    degenerate states ......................................... 421

 Appendix A-6: Expressions for thermoelectric
    power in solids: conducting polymers ...................... 423
I.  Definition and reasons for use ............................ 423
    1. Definition ............................................. 423
    2. Reasons for use ........................................ 423
II. ТЕР of metals (EF within a band of 
    delocalised states) ....................................... 424
III.ТЕР of semiconductors (SC) (EF in the 
    gap) ...................................................... 424
    1. Preliminary remark ..................................... 425
    2. An ideal n-type semiconductor .......................... 425
    3. An ideal n-type semiconductor .......................... 426
    4. Comment on amorphous semiconductors .................... 426
    5. A non-ideal amorphous semiconductor 
       with ЕF below its states in the 
       band tails ............................................. 426
IV. ТЕР under a polaronic regime .............................. 427
    1. High temperature regime ................................ 427
    2. Intermediate temperature regime ........................ 427
    3. Other regimes .......................................... 427
V.  The ТЕР for a high density of localised 
    states around ЕF .......................................... 427
    1. Initial hypothesis ..................................... 427
    2. The result in VRH ...................................... 428
VI. General representation .................................... 429
VII.Real behaviour ............................................ 429
    1. General laws ........................................... 429
    2. Behaviour as a function of doping 
       levels ................................................. 430
    3. Representational graph ................................. 431
    4. An example result ...................................... 431
 
 Appendix A-7: Stages leading to emission and
    injection laws at interfaces .............................. 433
I.  Thermoelectric emission and the 
    Dushman-Richardson law .................................... 433
II. Schottky injection (field effect 
    emissions) ................................................ 434
    1. The potential barrier at the atomic 
       scale .................................................. 435
   2.  Emission conditions: Schottky 
       emission law and the decrease 
       in the potential barrier by 
       field effect ........................................... 435
III.Injection through tunnelling effect 
    and the Fowler-Nordheim equation .......................... 437
    1. The problem ............................................ 437
    2. Form of the transparency (T) of a 
       triangular barrier ..................................... 438
    3. The Fowler-Nordheim equation ........................... 440
 
 Appendix A-8: Energy levels and permitted
    transitions (and selection rules) in
    isolated atoms ............................................ 443
I.  Spherical atoms with an external 
    electron .................................................. 443
    1. Energy levels and electron 
       configuration .......................................... 443
    2. Selection rules ........................................ 444
II. An atom with more than one peripheral 
    electron .................................................. 445
    1. First effect produced from the 
       perturbation Hee due to exact 
       electronic interactions ................................ 445
    2. Perturbation involving the coupling 
       energy between different magnetic 
       moments exactly tied to kinetic 
       moments ................................................ 446
    3. Selection rules ........................................ 447
 
 Appendix A-9: Etching polymers with
    ion beams: characteristics and results .................... 449
I.  Level of pulverisation (Y) ................................ 449
    1. Definition ............................................. 449
    2. The result Yphysical = f(E):
       3 zones ................................................ 450
    3. Level of chemical pulverisation ........................ 451
II. The relationship between etching speed 
    and degree of pulverisation ............................... 451
    1. At normal incidence .................................... 451
    2. At oblique incidence ................................... 452
III.Speed of reactive etching (IBAE Ar+/02 
    or 0+/02).................................................. 452
IV. Preliminary modelling of Yphysical 
    for PI 2566 ............................................... 454
    1. Levels of carbon pulverisation using 
       0+ ions ................................................ 454
    2. Comparing simulations of 
       Yphysical(Θ) = f(Θ) and
       the Thompson and Sigmund models ........................ 454
V.  Results from etching of polyimides ........................ 455
    1. Self-supporting polyimide: UPILEX ...................... 455
    2. A study of the etching of PI 2566 ...................... 456
 
 Appendix A-10: An aide-mémoire on
    dielectrics ............................................... 459
I.  Definitions of various dielectric 
    permittivities ............................................ 459
    1. Absolute permittivity .................................. 459
    2. Relative permittivity .................................. 459
    3. Complex relative permittivity .......................... 460
    4. Limited permittivities ................................. 460
    5. Dielectric conductivity ................................ 461
    6. Classification of diverse dielectric    
       phenomena .............................................. 461
 II. Relaxation of a charge occupying two 
     position separated by a potential 
     barrier .................................................. 463
     1. Aide-mémoire .......................................... 463
     2. Transportation in a dielectric with 
        trapping levels, and the effect of 
        an electric field on transitions 
        between trap levels ................................... 464
     3. Expression for the polarisation at 
        an instant t following the 
        displacement of electrons ............................. 466
     4. Practical determination of potential 
        well depths ........................................... 467
 
 Appendix A-11: The principal small 
    molecules and polymers used in organic
    optoelectronics ........................................... 471
I.  Chemical groups and electron transport .................... 471
II. Examples of polymers used for their  
    electroluminescence ....................................... 471
    1. The principal emitting polymers ........................ 471
    2. 'The' polymer for hole injection 
       layers (HIL) ........................................... 472
    3. Example of a polymer used in hole 
       transport layers (HTL) ................................. 473
    4. Example of a polymer used in 
       electron transport layer (ETL) ......................... 473
III.Small molecules ........................................... 473
    1. The principal green light emitting 
       ligands ................................................ 473
    2. Principal electron transporting small 
       molecules emitting green light ......................... 474
    3. Example electron transporting small 
       molecules emitting blue light .......................... 474
    4. Example small molecules which emit 
       red light .............................................. 474
    5. Examples of small molecules which 
       serve principally as hole injection 
       layers (HIL) ........................................... 475
    6. Examples of small molecules serving    
       principally in hole transport layers 
       (HTL) .................................................. 475
    7. Example of a small molecule serving 
       principally to confine holes in 'hole
       blocking layers' (HBL) ................................. 476
 
 Appendix A-12: Mechanical generation of the
    second harmonic and the Pockels effect .................... 477
I.  Mechanical generation of the second 
    harmonic (in one-dimension) ............................... 477
    1. Preliminary remark: the effect of 
       an intense optical field (Еω) .......................... 477
    2. Placing the problem into equations ..................... 477
    3. Solving the problem .................................... 480
II. Excitation using two pulses and the 
    Pockels effect ............................................ 481
    1. Excitation from two pulses ............................. 481
    2. The Pockels Effect ..................................... 482
 
 Bibliography ................................................. 485
 
 Index ........................................................ 495


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:19:36 2019. Размер: 45,875 bytes.
Посещение N 2214 c 10.03.2009