Kramers-kronig relations in optical materials research (Berlin; Heidelberg, 2005). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаKramers-kronig relations in optical materials research / Lucarini V., Saarinen J.J., Peiponen K.E., Vartiainen E.M. - Berlin; Heidelberg: Springer, 2005. - ix, 160 p. - (Springer series in optical sciences; 110). - ISBN 3-540-23673-2; ISSN 03242-4111
 

Оглавление / Contents
 
1. Introduction ................................................. 1
2. Electrodynamic Properties of a General Physical System ....... 5

2.1. The Maxwell Equations ...................................... 5
2.2. The System: Lagrangian and Hamiltonian Descriptions ........ 6
2.3. Polarization as a Statistical Property of a System ......... 9

3. General Properties of the Linear Optical Response ........... 11

3.1. Linear Optical Properties ................................. 11
     3.1.1. Transmission and Reflection at the Boundary
            Between Two Media .................................. 14
3.2. Microscopic Description of Linear Polarization ............ 16
3.3. Asymptotic Properties of Linear Susceptibility ............ 17
3.4. Local Field and Effective Medium Approximation in
     Linear Optics ............................................. 19
     3.4.1. Homogeneous Media .................................. 19
     3.4.2. Two-Phase Media .................................... 21

4. Kramers-Kronig Relations and Sum Rules
   in Linear Optics ............................................ 27

4.1. Introductory Remarks ...................................... 27
4.2. The Principle of Causality ................................ 27
4.3. Titchmarsch's Theorem and Kramers-Kronig Relations ........ 28
     4.3.1. Kramers-Kronig Relations for Conductors ............ 29
     4.3.2. Kramers-Kronig Relations
            for the Effective Susceptibility of
            Nanostructures ..................................... 30
4.4. Superconvergence Theorem and Sum Rules .................... 31
4.5. Sum Rules for Conductors .................................. 33
     4.5.1. Sum Rules for the Linear Effective
            Susceptibilities of Nanostructures ................. 33
4.6. Integral Properties of Optical Constants .................. 34
     4.6.1. Integral Properties of the Index of Refraction ..... 35
     4.6.2. Kramers-Kronig Relations
            in Linear Reflectance Spectroscopy ................. 39
4.7. Generalization of Integral Properties
     for More Effective Data Analysis .......................... 44
     4.7.1. Generalized Kramers-Kronig Relations ............... 45
     4.7.2. Subtractive K-K Relations .......................... 47

5. General Properties of the Nonlinear Optical Response ........ 49

5.1. Nonlinear Optics: A Brief Introduction .................... 49
5.2. Nonlinear Optical Properties .............................. 51
     5.2.1. Pump-and-Probe Processes ........................... 54
5.3. Microscopic Description of Nonlinear Polarization ......... 56
5.4. Local Field and Effective Medium Approximation
     in Nonlinear Optics ....................................... 58
     5.4.1. Homogeneous Media .................................. 58
     5.4.2. Two-Phase Media .................................... 60
     5.4.3. Tailoring of the Optical Properties
            of Nanostructures .................................. 63

6. Kramers-Kronig Relations and  Sum Rules
   in Nonlinear Optics ......................................... 71

6.1. Introductory Remarks ...................................... 71
6.2. Kramers-Kronig Relations in Nonlinear Optics:
     Independent Variables ..................................... 72
6.3. Scandolo's Theorem and Kramers-Kronig Relations
     in Nonlinear Optics ....................................... 73
6.4. Kramers-Kronig Analysis of the Pump-and-Probe System ...... 77
     6.4.1    Generalization of Kramers-Kronig Relations
     and Sum Rules ............................................. 79

7. Kramers-Kronig Relations and Sum Rules
   for Harmonic-Generation Processes ........................... 83

7.1. Introductory Remarks ...................................... 83

7.2. Application of Scandolo's Theorem
     to Harmonic-Generation Susceptibility ..................... 83
7.3. Asymptotic Behavior of Harmonic-Generation
     Susceptibility ............................................ 84
7.4. General Kramers-Kronig Relations and Sum Rules
     for Harmonic-Generation Susceptibility .................... 87
     7.4.1. General Integral Properties of Nonlinear
            Conductors ......................................... 89
7.5. Subtractive Kramers-Kronig Relations
     for Harmonic-Generation Susceptibility .................... 90

8. Kramers-Kronig Relations and  Sum  Rules
   for Data Analysis: Examples ................................. 93

8.1. Introductory Remarks ...................................... 93
8.2. Applications of Kramers-Kronig Relations
     for Data Inversion ........................................ 93
     8.2.1. Kramers-Kronig Inversion
            of Harmonic-Generation Susceptibility .............. 94
     8.2.2. Kramers-Kronig Inversion of the Second Power
            of Harmonic-Generation Susceptibility .............. 96
8.3. Verification of Sum Rules
     for Harmonic-Generation Susceptibility .................... 98
8.4. Application of Singly Subtractive
     Kramers-Kronig Relations ................................. 101
8.5. Estimates of the Truncation Error
     in Kramers-Kronig Relations .............................. 104
8.6. Sum Rules and Static Second-Order Nonlinear
     Susceptibility ........................................... 106

9. Modified Kramers-Kronig Relations
   in Nonlinear Optics ........................................ 109

9.1. Modified  Kramers-Kronig  Relations
     for a Meromorphic Nonlinear Quantity ..................... 109
9.2. Sum Rules for a Meromorphic Nonlinear Quantity ........... 112

10.The Maximum Entropy Method: Theory and Applications ........ 115

10.1.The Theory of the Maximum Entropy Method ................. 115

10.2.The Maximum Entropy Method in Linear Optical
     Spectroscopy ............................................. 117
     10.2.1.Phase Retrieval from Linear Reflectance ........... 117
     10.2.2.Study of Surface Plasmon Resonance ................ 120
     10.2.3.Misplacement Phase Error Correction
            in Terahertz Time-Domain Spectroscopy ............. 126
10.3.The Maximum Entropy Method in Nonlinear Optical
     Spectroscopy ............................................. 128

11.Conclusions ................................................ 133

A. MATLAB Programs for Data Analysis .......................... 137

A.l. Program 1: Estimation of the Imaginary Part
     via Kramers-Kronig Relations ............................. 137
A.2. Program 2: Estimation  of the  Real via
     Kramers-Kronig Relations ................................. 139
A.3. Program 3: Self-Consistent Estimate of the Real
     and Imaginary Parts of Susceptibility .................... 141
A.4. Program 4: Estimation of the Imaginary Part
     via Singly Subtractive Kramers-Kronig Relations .......... 142
A.5. Program 5:  Estimation of the Real Part
     via Singly Subtractive Kramers-Kronig Relations .......... 143

References .................................................... 145
Index ......................................................... 159


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:19:36 2019. Размер: 10,928 bytes.
Посещение N 2169 c 10.03.2009