Part I Fundamental
1 DV-Xα Method and Molecular Structure
H. Adachi .............................................. 3
1.1. Molecular Orbital Theory .................................. 3
1.2. Discrete Variational (DV) Xα Molecular
Orbital Method ............................................ 5
1.3. Molecular Orbital Calculation of H2 ...................... 10
1.4. Covalency and Ionicity ................................... 13
1.5. DV-Xα Molecular Orbital Calculation for CO Molecule ...... 15
References .................................................... 20
Part II Materials Science
2 Alloy Design Based on the DV-Xa Cluster Method
M. Morinaga, Y. Murata, H. Yukawa ..................... 23
2.1. Introduction ............................................. 23
2.2. DV-Xα Molecular Orbital Method ........................... 24
2.3. Alloying Parameters ...................................... 25
2.3.1. d-Orbital Energy Level, Md ........................ 25
2.3.2. Bond Order, Bo .................................... 26
2.3.3. Average Parameter Values for Typical Alloys ....... 27
2.4. Estimation of Alloy Properties Using Alloying
Parameters ............................................... 29
2.4.1. Nickel Alloys ..................................... 29
New PHACOMP Method ................................ 30
Alloying Vector ................................... 30
Target Region for Alloy Design .................... 32
Alloy Modification Using the Bo-Md Diagram ........ 32
2.4.2. High-Cr Ferritic Steels ........................... 33
Alloying Vector ................................... 33
δ Ferrite Formation ............................... 34
Evolution of Ferritic Steels ...................... 34
2.5. Design of Structural Alloys .............................. 36
2.5.1. Nickel-Based Single-Crystal Superalloys ........... 36
2.5.2. High-Cr Ferritic Steels ........................... 36
2.6. Crystal Structure Maps for Intermetallic Compounds ....... 37
2.7. Hydrogen Storage Alloys .................................. 37
2.7.1. Metal-hydrogen Interaction ........................ 38
2.7.2. Roles of Hydride-Forming and Non-Forming
Elements .......................................... 40
2.7.3. Criteria for Alloy Design ......................... 41
Alloy Cluster Suitable for Hydrogen Storage ....... 41
Alloy Compositions ................................ 42
Mg-Based Alloys ................................... 43
2.8. Proton-Conducting Perovskite-type Oxides ................. 44
2.9. Conclusion ............................................... 46
References .................................................... 46
3. Chemical Bonding Around Lattice Imperfections
in 3d-Transit ion Metal Compounds
M. Mizuno ............................................... 49
3.1. Introduction ............................................. 49
3.2. Computational Method ..................................... 50
3.3. Effect of Solute Atoms on the Chemical Bonding of
Fe3C ..................................................... 51
3.3.1. Crystal Structure and Cluster Models for
Fe3C with Solute Atoms ............................ 51
3.3.2. Pure Fe3C ......................................... 54
3.3.3. Fe3C with Solute Atoms ............................ 55
3.3.4. Effect of Solute Atoms on Fe3C .................... 57
3.3.5. Effect of Solute Atoms in Other Transition Metal
Carbides .......................................... 60
3.4. Chemical Bonding at the Fe/TiX (X = C, N, or O)
Interfaces ............................................... 65
3.4.1. Model Clusters for the Fe/TiX Interfaces .......... 66
3.4.2. 1 Bulk TiC, TiN, and TiO .......................... 68
3.4.3. Preferred Position of Fe Atoms at the Fe/TiC
Interface ......................................... 70
3.4.4. Analysis of the Chemical Bonding at
the Fe/TiC, Fe/TiN, and Fe/TiO Interfaces ......... 72
3.4.5. Other Interfaces .................................. 76
3.5. Conclusions .............................................. 81
References .................................................... 82
4. Ceramics
T. Kamiya. N. Ohashi, J. Tanaka .......................... 85
4.1. General Introduction ..................................... 85
4.2. Characterization of Ceramics with the Assistance
of DV-Xα Calculations .................................... 87
4.2.1. Assignments for Electron Spectroscopy ............. 88
Introduction ...................................... 88
Calculation ....................................... 91
Results ........................................... 92
Remarks ........................................... 92
4.2.2. Prediction of Atomic Arrangements ................. 93
Introduction ...................................... 93
4.2.3. Theory and Calculation ............................ 94
4.3. Results .................................................. 96
Remarks .................................................. 97
4.3.1. Assignments for the ESR Spectra Using
Electron Density Calculations by DV-Xα ............ 98
Introduction ............................................. 98
Theory and Calculation ................................... 98
4.3.2. Results .......................................... 100
4.4. Property and Structure Predictions for Ceramics
Using DV-Xα ............................................. 102
4.4.1. Calculation of Structural and Dielectric
Properties of Inorganic Crystals Using DV-Xα
Basis Functions .................................. 103
Introduction ..................................... 103
Calculation ...................................... 104
Results .......................................... 105
4.4.2. Tight-binding Approach Using the DV-Xα Method .... 106
Introduction ..................................... 106
Calculation ...................................... 107
4.4.3. Results .......................................... 108
4.4.4. Indirect Prediction of the Piezoelectric
Property Change of Pb(Zr, Ti)CO3 Induced
by the Addition of Impurities .................... 112
Introduction ..................................... 112
Calculation ...................................... 113
Results .......................................... 114
4.5. Remarks ................................................. 118
References .............................................. 118
5 Magnetic Properties
K. Fukushima ............................................ 121
5.1. Introduction ............................................ 121
5.2. Computational Method and Models ......................... 123
5.3. Results and Discussion .................................. 125
5.4. Conclusions ............................................. 127
References ................................................... 127
6. Optical Materials
K. Ogasawara, H. Adachi ................................ 129
6.1. Introduction ............................................ 129
6.1.1. Optical Materials Based on Transition-Metal
Ions ............................................. 129
6.1.2. Ligand-Field Theory .............................. 131
6.1.3. First-principle Calculation of Multiplets ........ 132
6.1.4. DV-ME Method ..................................... 133
6.2. DV-ME Method ............................................ 133
6.2.1. Configuration Interaction ........................ 133
6.2.2. CDC Approach ..................................... 135
6.2.3. Correlation Correction ........................... 136
6.2.4. Transition Probability ........................... 137
6.3. Calculation of the Absorption Spectrum of Ruby .......... 138
6.3.1. Model Cluster .................................... 138
6.3.2. One-Electron Energy Level ........................ 138
6.3.3. Multiplet Energy Level ........................... 138
6.3.4. Absorption Spectra ............................... 139
6.4. Calculation of the Absorption Spectrum of Co2+:ZnS ...... 141
6.4.1. Model Cluster .................................... 141
6.4.2. One-Electron Energy Level ........................ 141
6.4.3. Multiplet Energy Level ........................... 141
6.4.4. Absorption Spectrum .............................. 142
6.5. Summary ................................................. 143
References .............................................. 144
7. Heavy Elements
T. Ishii, M. Yamashita, R. Sekine, T. Enoki ............ 147
7.1. Introduction ............................................ 147
7.2. Method of Calculation ................................... 148
7.3. Results and Discussion .................................. 150
References ................................................... 159
Part III Spectroscopy
8 Radiative Transitions
T. Mukoyama ............................................. 163
8.1. Introduction ............................................ 163
8.2. Transition Probability .................................. 165
8.3. Dipole Matrix Element ................................... 168
8.4. Molecular X-Ray Emission ................................ 171
8.5. Test for X-Ray Emission Rates ........................... 173
8.5.1. Validity of the DV Integration Method ............ 173
8.5.2. Electronic Relaxation Effect ..................... 174
8.5.3. Contributions from Interatomic Transitions ....... 177
8.6. Chemical Effect of the Kβ/Kα Ratios for 3d Elements .... 178
8.7. Relation between Kβ/Kα Ratios and the Number of 3d
Electrons ............................................... 182
8.8. Summary ................................................. 186
References ................................................... 187
9. Response to the Creation of a Core Hole
in Transition-Metal Compounds
J. Kawai ............................................... 189
9.1. Core-hole Spectroscopic Techniques ...................... 189
9.2. Ionic Chemical Bond as a Perturbation of Atomic
Structure ............................................... 194
9.3. Covalent Bond Formation Due to a Core Hole .............. 196
9.4. Charge Transfer Due to a Core Hole ...................... 197
9.5. Calculation Details ..................................... 198
9.5.1. Cluster Size ..................................... 198
9.5.2. Difference Between ls↓-1 and ls↑-1
Hole States ...................................... 199
9.5.3. Difference Between Is-1 and 2p-1
Hole States ...................................... 200
9.5.4. Effect of Bond Length Difference ................. 200
9.6. Charge-Transfer Effect .................................. 201
9.7. Concluding Remarks ...................................... 204
References ................................................... 205
10.Determining Electronic Structure from Auger Spectra
in the Cluster Approximation
L. Kover .............................................. 209
10.1.Introduction ............................................ 209
10.2.Effects of the Atomic Environment of Auger Spectra
Excited from Solids ..................................... 210
10.3.X-ray Excited Auger Spectroscopy for Studying
Chemical and Solid State Effects on Auger Spectra ....... 211
10.4.Local Charges in Binary Alloys .......................... 211
10.4.1.Experimental ..................................... 213
10.4.2.Charge Transfer in CuPd Alloys ................... 213
10.4.3.Charge Transfer in A13Ni and AlNi3 Alloys ........ 214
10.5.Generalized Electrostatic Model for Interpreting
Auger Parameter Shifts and Final State
Relaxation/Polarization ................................. 217
10.6.Interpretation of K-Auger Satellite Structures
in 3α Metals and in Fluorides, Using the MO
Cluster Approach ........................................ 219
10.6.1.F KLL Auger Spectra of Metallic Cu and Ni:
Calculation of the Satellite Main Line Energy
Separation Using the DV-Xa Cluster Molecular
Orbital Model .................................... 219
10.6.2.F KLL Spectra in Fluorides: Determination of
the Resonance Energy and Multiplet Structure
Using DV-Xα Cluster Molecular Orbital
Calculations ..................................... 222
10.7.Information on Local Electronic Structure and
Correlation from Core-valence Auger Lineshapes .......... 226
10.7.1.Local Electronic Structures in Phosphorus
Oxyanions ........................................ 227
10.7.2.Core-valence K-Auger Spectra of Metallic Al ...... 227
10.7.3.Local Electronic Structure in Al-Ni Alloys ....... 230
10.8.Summary ................................................. 234
References ................................................... 234
Index ........................................................ 237
|