The IMA volumes in mathematics and its applications; 147 (New-York, 2008). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаThe IMA volumes in mathematics and its applications. Vol.147: Symmetric functionals on random matrices and random matchings problems / Rempala G.A., Wesolowski J. - New-York: Springer, 2008. - xiv, 179 p. - ISBN 978-0-387-75145-0
 

Место хранения: 01 | ГПНТБ СО РАН | Новосибирск

Оглавление / Contents
 
Foreword ..................................................... VII
Preface ....................................................... IX

1. Basic Concepts .............................................. 1

   1.1. Bipartite Graphs in Complex Stochastic Systems ......... 1
   1.2. Perfect Matchings ...................................... 2
   1.3. Permanent Function ..................................... 4
   1.4. P-statistics ........................................... 6
   1.5. The H-decomposition .................................... 8
   1.6. P-statistics .......................................... 12
   1.7. Examples .............................................. 14
   1.8. Bibliographic Details ................................. 16

2. Properties of P-statistics ................................. 19

   2.1. Preliminaries: Martingales ............................ 19
   2.2. P-decomposition of a P-statistic ...................... 21
   2.3. Variance Formula for a P-statistic .................... 27
   2.4. Bibliographic Details ................................. 32

3. Asymptotics for Random Permanents .......................... 35

   3.1. Introduction .......................................... 35
   3.2. Preliminaries ......................................... 37
        3.2.1. Limit Theorems for Exchangeable
               Random Variables ............................... 37
        3.2.2. Law of Large Numbers for Triangular Arrays ..... 40
        3.2.3. More on Elementary Symmetric Polynomials ....... 41
   3.3. Limit Theorem for Elementary Symmetric Polynomials .... 43
   3.4. Limit Theorems for Random Permanents .................. 45
   3.5. Additional Central Limit Theorems ..................... 55
   3.6. Strong Laws of Large Numbers .......................... 59
   3.7. Bibliographic Details ................................. 65

4. Weak Convergence of Permanent Processes .................... 67

   4.1. Introduction .......................................... 67
   4.2. Weak Convergence in Metric Spaces ..................... 68
   4.3. The Skorohod Space .................................... 71
   4.4. Permanent Stochastic Process .......................... 74
   4.5. Weak Convergence of Stochastic Integrals
        and Symmetric Polynomials Processes ................... 75
   4.6. Convergence of the Component Processes ................ 78
   4.7. Functional Limit Theorems ............................. 81
   4.8. Bibliographic Details ................................. 86

5. Weak Convergence of P-statistics ........................... 87

   5.1. Multiple Wiener-Ito Integral. Limit Law
        for U-statistics ...................................... 88
        5.1.1. Multiple Wiener-Ito Integral
               of a Symmetric Function ........................ 88
        5.1.2. Classical Limit Theorems for U-statistics ...... 92
        5.1.3. Dynkin-Mandelbaum Theorem ...................... 94
        5.1.4. Limit Theorem for U-statistics of
               Increasing Order ............................... 96
   
   5.2. Asymptotics for P-statistics ......................... 100
   5.3. Examples ............................................. 107
   5.4. Bibliographic Details ................................ 120

6. Permanent Designs and Related Topics ...................... 121

   6.1. Incomplete U-statistics .............................. 121
   6.2. Permanent Design ..................................... 125
   6.3. Asymptotic properties of USPD ........................ 129
   6.4. Minimal Rectangular Schemes .......................... 134
   6.5. Existence and Construction of MRS .................... 140
        6.5.1. Strongly Regular Graphs ....................... 140
        6.5.2. MRS and Orthogonal Latin Squares .............. 142
   6.6. Examples ............................................. 144
   6.7. Bibliographic Details ................................ 147

7. Products of Partial Sums and Wishart Determinants ......... 149

   7.1. Introduction ......................................... 149
   7.2. Products of Partial Sums for Sequences ............... 151
        7.2.1 Extension to Classical U-statistics ............ 157
   7.3. Products of Independent Partial Sums ................. 160
        7.3.1 Extensions ..................................... 165
   7.4. Asymptotics for Wishart Determinants ................. 167
   7.5. Bibliographic Details ................................ 169

References ................................................... 171

Index ........................................................ 177


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:19:34 2019. Размер: 8,308 bytes.
Посещение N 2069 c 17.02.2009