Preface ...................................................... XIII
List of Contributors ......................................... XVII
I. Logic Devices and Concepts .................................. 1
1. Non-Conventional Complementary Metal-Oxide-Semiconductor
(CMOS) Devices .............................................. 3
Lothar Risch
1.1. Nano-Size CMOS and Challenges ......................... 3
1.2. Mobility Enhancement: SiGe, Strained Layers, Crystal
Orientation ........................................... 5
1.3. High-fc Gate Dielectrics and Metal Gate ............... 7
1.4. Ultra-Thin SOI ........................................ 9
1.5. Multi-Gate Devices ................................... 12
1.5.1. Wafer-Bonded Planar Double Gate .............. 13
1.5.2. Silicon-On-Nothing Gate All Around ........... 14
1.5.3. FinFET ....................................... 16
1.5.4. Limits of Multi-Gate MOSFETs ................. 19
1.6. Multi-Gate Flash Cell ................................ 19
1.7. 3d-DRAM Array Devices: RCAT, FinFET .................. 22
1.8. Prospects ............................................ 25
References ................................................. 26
2. Indium Arsenide (InAs) Nanowire Wrapped-lnsulator-Gate
Field-Effect Transistor .................................... 29
Lars-Erik Wernersson, Tomas Bryllert, Linus Fröberg,
Erik Lind, Claes Thelander, and Lars Samuelson
2.1. Introduction ......................................... 29
2.2. Nanowire Materials ................................... 30
2.3. Processing ........................................... 30
2.4. Long-Channel Transistors ............................. 33
2.5. Short-Channel Transistors ............................ 35
2.6. Heterostructure WIGFETs .............................. 36
2.7. Benchmarking ......................................... 39
2.8. Outlook .............................................. 41
References ..................................................... 42
3. Single-Electron Transistor and its Logic Application ....... 45
Yukinori Ono, Hiroshi Inokawa, Yasuo Takahashi,
Katsuhiko Nishiguchi, and Akira Fujiwara
3.1. Introduction ......................................... 45
3.2. SET Operation Principle .............................. 46
3.3. SET Fabrication ...................................... 49
3.4. Single-Electron Logic ................................ 54
3.4.1. Basic SET Logic .............................. 54
3.4.2. Multiple-Gate SET and Pass-Transistor
Logic ........................................ 56
3.4.3. Combined SET-MOSFET Configuration and
Multiple-Valued Logic ........................ 59
3.4.4. Considerations on SET Logic .................. 60
3.5. Conclusions .......................................... 65
References ................................................. 65
4. Magnetic Domain Wall Logic ................................. 69
Dan A.Allwood and Russell P.Cowburn
4.1. Introduction ......................................... 69
4.2. Experimental ......................................... 72
4.3. Propagating Data ..................................... 73
4.4. Data Processing ...................................... 75
4.5. Data Writing and Erasing ............................. 84
4.6. Outlook and Conclusions .............................. 88
References ..................................................... 90
5. Monolithic and Hybrid Spintronics .......................... 93
Supriyo Bandyopadhyay
5.1. Introduction ......................................... 93
5.2. Hybrid Spintronics ................................... 94
5.2.1. The Spin Field Effect Transistor (SPINFET) ... 94
5.2.1.1. The Effect of Non-Idealities ....... 97
5.2.1.2. The SPINFET Based on the
Dresselhaus Spin-Orbit Interaction 100
5.2.2. Device Performance of SPINFETs .............. 101
5.2.3. Other Types of SPINFET ...................... 102
5.2.3.1. The Non-Ballistic SPINFET ......... 102
5.2.3.2. The Spin Relaxation Transistor .... 104
5.2.4. The Importance of the Spin Injection
Efficiency .................................. 105
5.2.4.1. Spin Injection Efficiency ......... 105
5.2.5. Spin Bipolar Junction Transistors (SBJTs) ... 106
5.2.6. The Switching Speed ......................... 107
5.3. Monolithic Spintronics: Single Spin Logic ........... 107
5.3.1. Spin Polarization as a Bistable Entity ...... 107
5.3.2. Stability of Spin Polarization .............. 108
5.3.3. Reading and Writing Spin .................... 108
5.3.3.1. Writing Spin ...................... 109
5.3.3.2. Reading Spin ...................... 109
5.3.4. The Universal Single Spin Logic Gate: The
NAND Gate ................................... 109
5.3.5. Bit Error Probability ....................... 111
5.3.6. Related Charge-Based Paradigms .............. 113
5.3.7. The Issue of Unidirectionality .............. 114
5.3.8. Unidirectionality in Time: Clocking ......... 115
5.3.9. Energy and Power Dissipation ................ 116
5.3.10. Operating Temperature ....................... 117
5.3.11. Energy Dissipation Estimates ................ 117
5.3.12. Other Issues ................................ 118
5.4. Spin-Based Quantum Computing: An Engineer's
Perspective ......................................... 119
5.4.1. Quantum Parallelism ......................... 120
5.4.2. Physical Realization of a Qubit: Spin of
an Electron in a Quantum Dot ................ 121
5.5. Conclusions ................................... 122
References .......................................... 122
6. Organic Transistors ....................................... 125
Hagen Klauk
6.1. Introduction ........................................ 125
6.2. Materials ........................................... 128
6.3. Device Structures and Manufacturing ................. 134
6.4. Electrical Characteristics .......................... 138
6.5. Applications ........................................ 143
6.6. Outlook ............................................. 148
References .................................................... 149
7. Carbon Nanotubes in Electronics ........................... 155
M.Meyyappan
7.1. Introduction ........................................ 155
7.2. Structure and Properties ............................ 155
7.3. Growth .............................................. 157
7.4. Nanoelectronics ..................................... 160
7.4.1. Field Effect Transistors .................... 161
7.4.2. Device Physics .............................. 166
7.4.3. Memory Devices .............................. 167
7.5. Carbon Nanotubes in Silicon CMOS Fabrication ........ 167
7.5.1. Interconnects ............................... 167
7.5.2. Thermal Interface Material for Chip
Cooling ..................................... 169
7.5.3. CNT Probes in Metrology ..................... 170
7.6. Summary ............................................. 172
References ................................................ 172
8. Concepts in Single-Molecule Electronics ................... 175
Björn Lüssem and Thomas Bjørnholm
8.1. Introduction ........................................ 175
8.2. The General Set-Up of a Molecular Device ............ 176
8.2.1. The Strong Coupling Regime .................. 177
8.2.2. The Weak Coupling Regime .................... 178
8.3. Realizations of Molecular Devices ................... 179
8.3.1. Molecular Contacts .......................... 279
8.3.2. Mechanically Controlled Break Junctions ..... 180
8.3.3. Scanning Probe Set-Ups ...................... 181
8.3.4. Crossed Wire Set-Up ......................... 183
8.3.5. Nanogaps .................................... 183
8.3.6. Crossbar Structure .......................... 184
8.3.7. Three-Terminal Devices ...................... 185
8.3.8. Nanogaps Prepared by Chemical "Bottom-Up"
Methods ..................................... 187
8.3.9. Conclusion .................................. 187
8.4. Molecular Functions ................................. 189
8.4.1. Molecular Wires ............................. 190
8.4.2. Molecular Diodes ............................ 190
8.4.2.1. The Aviram-Ratner Concept ......... 191
8.4.2.2. Rectification Due to Asymmetric
Tunneling Barriers ................ 192
8.4.2.3. Examples .......................... 193
8.4.2.4. Diode-Diode Logic ................. 193
8.4.3. Negative Differential Resistance Diodes ..... 294
8.4.3.1. Inverting Logic Using NDR
Devices ........................... 195
8.4.4. Hysteretic switches ......................... 196
8.4.4.1. The Crossbar Latch: Signal
Restoration and Inversion ......... 197
8.4.5. Single-Molecule Single-Electron
Transistors ................................. 199
8.4.6. Artifacts in Molecular Electronic Devices ... 202
8.4.6.1. Sources of Artifacts .............. 201
8.4.7. Conclusions ................................. 203
8.5. Building Logical Circuits: Assembly of a Large
Number of Molecular Devices ......................... 203
8.5.1. Programmable Logic Arrays Based on
Crossbars ................................... 204
8.5.2. NanoCell .................................... 206
8.6. Challenges and Perspectives ................... 207
References ................................................ 208
9. Intermolecular- and Intramolecular-Level Logic Devices .... 213
Françoise Remacle and Raphael D. Levine
9.1. Introduction and Background ......................... 213
9.1.1. Quantum Computing ........................... 213
9.1.2. Quasiclassical Computing .................... 214
9.1.3. A Molecule as a Bistable Element ............ 224
9.1.4. Chemical Logic Gates ........................ 215
9.1.5. Molecular Combinational Circuits ............ 216
9.1.6. Concatenation, Fan-Out and Other Aspects of
Integration ................................. 217
9.1.7. Finite-State Machines ....................... 217
9.1.8. Multi-Valued Logic .......................... 219
9.2. Combinational Circuits by Molecular Photophysics .... 219
9.2.1. Molecular Logic Implementations of a Half
Adder by Photophysics ....................... 221
9.2.2. Two Manners of Optically Implementing a
Full Adder .................................. 224
9.3. Finite-State Machines ............................... 228
9.3.1. Optically Addressed Finite-State Machines ... 229
9.3.2. Finite-State Machines by Electrical
Addressing .................................. 236
9.4. Perspectives ........................................ 242
References .......................................... 244
II. Architectures and Computational Concepts ................. 249
10. A Survey of Bio-Inspired and Other Alternative
Architectures ............................................ 251
Dan Hammerstrom
10.1. Introduction ........................................ 251
10.1.1. Basic Neuroscience .......................... 252
10.1.2. A Very Simple Neural Model: The Perceptron .. 253
10.1.3. A Slightly More Complex Neural Model: The
Multiple Layer Perceptron ................... 255
10.1.4. Auto-Association ............................ 256
10.1.5. The Development of Biologically Inspired
Hardware .................................... 257
10.2. Early Studies in Biologically Inspired Hardware ..... 258
10.2.1. Flexibility Trade-Offs and Amdhal's Law ..... 260
10.2.2. Analog Very-Large-Scale Integration (VLSI) .. 263
10.2.3. Intel's Analog Neural Network Chip and
Digital Neural Network Chip ................. 265
10.2.4. Cellular Neural Networks .................... 266
10.2.5. Other Analog/Mixed Signal Work .............. 267
10.2.6. Digital SIMD Parallel Processing ............ 268
10.2.7. Other Digital Architectures ................. 272
10.2.8. General Vision .............................. 273
10.3. Current Directions in Neuro-Inspired Hardware ....... 273
10.3.1. Moving to a More Sophisticated
Neuro-Inspired Hardware ..................... 275
10.3.2. CMOL ........................................ 278
10.3.3. An Example: CMOL Nano-Cortex ................ 279
10.4. Summary and Conclusions ............................. 281
References ................................................ 282
11. Nanowire-Based Programmable Architectures ................. 287
André Delion
11.1. Introduction ........................................ 287
11.2. Technology .......................................... 289
11.2.1. Nanowires ................................... 289
11.2.2. Assembly .................................... 290
11.2.3. Crosspoints ................................. 290
11.2.4. Technology Roundup .......................... 291
11.3. Challenges .......................................... 291
11.3.1. Regular Assembly ............................ 292
11.3.2. Nanowire Lengths ............................ 292
11.3.3. Defective Wires and Crosspoints ............. 292
11.4. Building Blocks ..................................... 293
11.4.1. Crosspoint Arrays ........................... 294
11.4.1.1. Memory Core ....................... 294
11.4.1.2. Programmable, Wired-OR Plane ...... 294
11.4.1.3. Programmable Crossbar
Interconnect Arrays ............... 295
11.4.2. Decoders .................................... 296
11.4.2.1. NW Coding ......................... 296
11.4.2.2. Decoder Assembly .................. 297
11.4.2.3. Decoder and Multiplexer Operation . 297
11.4.3. Restoration and Inversion ................... 298
11.4.3.1. NW Inverter and Buffer ............ 299
11.4.3.2. Ideal Restoration Array ........... 300
11.4.3.3. Restoration Array Construction .... 301
11.5. Memory Array ........................................ 302
11.6. Logic Architecture .................................. 303
11.6.1. Logic ....................................... 304
11.6.1.1. Construction ...................... 304
11.6.1.2. Logic Circuit ..................... 305
11.6.1.3. Programming ....................... 305
11.6.2. Registers and Sequential Logic .............. 305
11.6.2.1. Basic Clocking .................... 305
11.6.2.2. Precharge Evaluation .............. 306
11.6.3. Interconnect ................................ 307
11.6.3.1. Basic Idea ........................ 307
11.6.3.2. NanoPLA Block ..................... 308
11.6.3.3. Interconnect ...................... 309
11.6.4. CMOS 10 ..................................... 311
11.6.5. Parameters .................................. 312
11.7. Defect Tolerance .................................... 313
11.7.1. NW Sparing .................................. 313
11.7.2. NW Defect Modeling .......................... 314
11.7.3. Net NW Yield Calculation .................... 315
11.7.4. Tolerating Non-Programmable Crosspoints ..... 315
11.8. Bootstrap Testing ................................... 317
11.8.1. Discovery ................................... 317
11.8.2. Programming ................................. 318
11.8.3. Scaling ..................................... 319
11.9. Area, Delay, and Energy ............................. 319
11.9.1. Area ........................................ 319
11.9.2. Delay ....................................... 320
11.9.3. Energy and Power ............................ 320
11.10.Net Area Density .................................... 321
11.11.Alternate Approaches ................................ 322
11.12.Research Issues ..................................... 324
11.13.Conclusions ......................................... 324
References ................................................ 325
12. Quantum Cellular Automata ................................. 329
Massimo Macucci
12.1. Introduction ........................................ 329
12.2. The Quantum Cellular Automaton Concept .............. 330
12.2.1. A New Architectural Paradigm for
Computation ................................. 330
12.2.2. From the Ground-State Approach to
the Clocked QCA Architecture ................ 336
12.2.3. Cell Polarization ........................... 338
12.3. Approaches to QCA Modeling .......................... 339
12.3.1. Hubbard-Like Hamiltonian .................... 339
12.3.2. Configuration-Interaction ................... 341
12.3.3. Semi-Classical Models ....................... 343
12.3.4. Simulated Annealing ......................... 346
12.3.5. Existing Simulators ......................... 347
12.4. Challenges and Characteristics of QCA Technology .... 348
12.4.1. Operating Temperature ....................... 348
12.4.2. Fabrication Tolerances ...................... 349
12.4.3. Limitations for the Operating Speed ......... 350
12.4.4. Power Dissipation ........................... 353
12.5. Physical Implementations of the QCA Architecture .... 354
12.5.1. Implementation with Metallic Junctions ...... 354
12.5.2. Semiconductor-Based Implementation .......... 355
12.5.3. Molecular QCA ............................... 357
12.5.4. Nanomagnetic QCA ............................ 358
12.5.5. Split-Current QCA ........................... 359
12.6. Outlook ............................................. 360
References ................................................ 361
13. Quantum Computation: Principles and Solid-State
Concepts .................................................. 363
Martin Weides and Edward Coldobin
13.1. Introduction to Quantum Computing ................... 363
13.1.1. The Power of Quantum Computers .............. 364
13.1.1.1. Sorting and Searching of Databases
(Grover's Algorithm) ...................... 365
13.1.1.2. Factorizing of Large Numbers
(Shor's Algorithm) ........................ 365
13.1.1.3. Cryptography and Quantum Communication .... 366
13.2. Types of Computation ................................ 366
13.2.1. Mathematical Definition of Information ...... 366
13.2.2. Irreversible Computation .................... 367
13.2.3. Reversible Computation ...................... 367
13.2.4. Information Carriers ........................ 368
13.3. Quantum Mechanics and Qubits ........................ 368
13.3.1. Bit versus Qubit ............................ 369
13.3.2. Qubit States ................................ 370
13.3.3. Entanglement ................................ 371
13.3.4. Physical State .............................. 371
13.3.4.1. Measurement ....................... 372
13.3.4.2. No-Cloning Theorem ................ 372
13.4. Operation Scheme .................................... 372
13.4.1. Quantum Algorithms: Initialization,
Execution and Termination ................... 373
13.4.2. Quantum Gates ............................... 374
13.5. Quantum Decoherence and Error Correction ............ 374
13.6. Qubit Requirements .................................. 375
13.7. Candidates for Qubits ............................... 375
13.7.1. Nuclear Magnetic Resonance (NMR)-Based
Qubits ...................................... 376
13.7.2. Advantages of Solid-State-Based Qubits ...... 376
13.7.3. Kane Quantum Computer ....................... 377
13.7.4. Quantum Dot ................................. 378
13.7.5. Superconducting Qubits ...................... 378
13.7.5.1. Charge Qubits ..................... 379
13.7.5.2. Flux Qubits ....................... 379
13.7.5.3. Fractional Flux Qubits ............ 380
13.8. Perspectives ........................................ 382
References .................................................... 382
Index ......................................................... 385
|