Nanotecgnology; 4 (Weinheim, 2008). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаNanotecgnology. Vol.4: Information technology, II / ed. by Waser R. - Weinheim: Wiley-VCH, 2008. - xx, 394 p: ill. - ISBN 978-3-527-31737-0
 

Место хранения: 02 | Отделение ГПНТБ СО РАН | Новосибирск

Оглавление / Contents
 
Preface ...................................................... XIII
List of Contributors ......................................... XVII

I.  Logic Devices and Concepts .................................. 1

1.  Non-Conventional Complementary Metal-Oxide-Semiconductor
    (CMOS) Devices .............................................. 3
       Lothar Risch

    1.1.  Nano-Size CMOS and Challenges ......................... 3
    1.2.  Mobility Enhancement: SiGe, Strained Layers, Crystal
          Orientation ........................................... 5
    1.3.  High-fc Gate Dielectrics and Metal Gate ............... 7
    1.4.  Ultra-Thin SOI ........................................ 9
    1.5.  Multi-Gate Devices ................................... 12
          1.5.1.  Wafer-Bonded Planar Double Gate .............. 13
          1.5.2.  Silicon-On-Nothing Gate All Around ........... 14
          1.5.3.  FinFET ....................................... 16
          1.5.4.  Limits of Multi-Gate MOSFETs ................. 19
    1.6.  Multi-Gate Flash Cell ................................ 19
    1.7.  3d-DRAM Array Devices: RCAT, FinFET .................. 22
    1.8.  Prospects ............................................ 25
    References ................................................. 26


2.  Indium Arsenide (InAs) Nanowire Wrapped-lnsulator-Gate
    Field-Effect Transistor .................................... 29
       Lars-Erik Wernersson, Tomas Bryllert, Linus Fröberg,
       Erik Lind, Claes Thelander, and Lars Samuelson

    2.1.  Introduction ......................................... 29
    2.2.  Nanowire Materials ................................... 30
    2.3.  Processing ........................................... 30
    2.4.  Long-Channel Transistors ............................. 33
    2.5.  Short-Channel Transistors ............................ 35
    2.6.  Heterostructure WIGFETs .............................. 36
    2.7.  Benchmarking ......................................... 39
    2.8.  Outlook .............................................. 41
References ..................................................... 42

3.  Single-Electron Transistor and its Logic Application ....... 45
       Yukinori Ono, Hiroshi Inokawa, Yasuo Takahashi,
       Katsuhiko Nishiguchi, and Akira Fujiwara

    3.1.  Introduction ......................................... 45
    3.2.  SET Operation Principle .............................. 46
    3.3.  SET Fabrication ...................................... 49
    3.4.  Single-Electron Logic ................................ 54
          3.4.1.  Basic SET Logic .............................. 54
          3.4.2.  Multiple-Gate SET and Pass-Transistor
                  Logic ........................................ 56
          3.4.3.  Combined SET-MOSFET Configuration and
                  Multiple-Valued Logic ........................ 59
          3.4.4.  Considerations on SET Logic .................. 60
    3.5.  Conclusions .......................................... 65
    References ................................................. 65

4.  Magnetic Domain Wall Logic ................................. 69
       Dan A.Allwood and Russell P.Cowburn

    4.1.  Introduction ......................................... 69
    4.2.  Experimental ......................................... 72
    4.3.  Propagating Data ..................................... 73
    4.4.  Data Processing ...................................... 75
    4.5.  Data Writing and Erasing ............................. 84
    4.6.  Outlook and Conclusions .............................. 88
References ..................................................... 90


5.  Monolithic and Hybrid Spintronics .......................... 93
       Supriyo Bandyopadhyay

    5.1.  Introduction ......................................... 93
    5.2.  Hybrid Spintronics ................................... 94
          5.2.1.  The Spin Field Effect Transistor (SPINFET) ... 94
                  5.2.1.1.  The Effect of Non-Idealities ....... 97
                  5.2.1.2.  The SPINFET Based on the
                            Dresselhaus Spin-Orbit Interaction  100
          5.2.2.  Device Performance of SPINFETs .............. 101
          5.2.3.  Other Types of SPINFET ...................... 102
                  5.2.3.1.  The Non-Ballistic SPINFET ......... 102
                  5.2.3.2.  The Spin Relaxation Transistor .... 104
          5.2.4.  The Importance of the Spin Injection
                  Efficiency .................................. 105
                  5.2.4.1.  Spin Injection Efficiency ......... 105
          5.2.5.  Spin Bipolar Junction Transistors (SBJTs) ... 106
          5.2.6.  The Switching Speed ......................... 107
    5.3.  Monolithic Spintronics: Single Spin Logic ........... 107
          5.3.1.  Spin Polarization as a Bistable Entity ...... 107
          5.3.2.  Stability of Spin Polarization .............. 108
          5.3.3.  Reading and Writing Spin .................... 108
                  5.3.3.1.  Writing Spin ...................... 109
                  5.3.3.2.  Reading Spin ...................... 109
          5.3.4.  The Universal Single Spin Logic Gate: The
                  NAND Gate ................................... 109
          5.3.5.  Bit Error Probability ....................... 111
          5.3.6.  Related Charge-Based Paradigms .............. 113
          5.3.7.  The Issue of Unidirectionality .............. 114
          5.3.8.  Unidirectionality in Time: Clocking ......... 115
          5.3.9.  Energy and Power Dissipation ................ 116
          5.3.10. Operating Temperature ....................... 117
          5.3.11. Energy Dissipation Estimates ................ 117
          5.3.12. Other Issues ................................ 118
    5.4.  Spin-Based Quantum Computing: An Engineer's
          Perspective ......................................... 119
          5.4.1.  Quantum Parallelism ......................... 120
          5.4.2.  Physical Realization of a Qubit: Spin of
                  an Electron in a Quantum Dot ................ 121
          5.5.  Conclusions ................................... 122
          References .......................................... 122

6.  Organic Transistors ....................................... 125
       Hagen Klauk

    6.1.  Introduction ........................................ 125
    6.2.  Materials ........................................... 128
    6.3.  Device Structures and Manufacturing ................. 134
    6.4.  Electrical Characteristics .......................... 138
    6.5.  Applications ........................................ 143
    6.6.  Outlook ............................................. 148
References .................................................... 149

7.  Carbon Nanotubes in Electronics ........................... 155
       M.Meyyappan

    7.1.  Introduction ........................................ 155
    7.2.  Structure and Properties ............................ 155
    7.3.  Growth .............................................. 157
    7.4.  Nanoelectronics ..................................... 160
          7.4.1.  Field Effect Transistors .................... 161
          7.4.2.  Device Physics .............................. 166
          7.4.3.  Memory Devices .............................. 167
    7.5.  Carbon Nanotubes in Silicon CMOS Fabrication ........ 167
          7.5.1.  Interconnects ............................... 167
          7.5.2.  Thermal Interface Material for Chip
                  Cooling ..................................... 169
          7.5.3.  CNT Probes in Metrology ..................... 170
    7.6.  Summary ............................................. 172
    References ................................................ 172

8.  Concepts in Single-Molecule Electronics ................... 175
       Björn Lüssem and Thomas Bjørnholm

    8.1.  Introduction ........................................ 175
    8.2.  The General Set-Up of a Molecular Device ............ 176
          8.2.1.  The Strong Coupling Regime .................. 177
          8.2.2.  The Weak Coupling Regime .................... 178
    8.3.  Realizations of Molecular Devices ................... 179
          8.3.1.  Molecular Contacts .......................... 279
          8.3.2.  Mechanically Controlled Break Junctions ..... 180
          8.3.3.  Scanning Probe Set-Ups ...................... 181
          8.3.4.  Crossed Wire Set-Up ......................... 183
          8.3.5.  Nanogaps .................................... 183
          8.3.6.  Crossbar Structure .......................... 184
          8.3.7.  Three-Terminal Devices ...................... 185
          8.3.8.  Nanogaps Prepared by Chemical "Bottom-Up"
                  Methods ..................................... 187
          8.3.9.  Conclusion .................................. 187
    8.4.  Molecular Functions ................................. 189
          8.4.1.  Molecular Wires ............................. 190
          8.4.2.  Molecular Diodes ............................ 190
                  8.4.2.1.  The Aviram-Ratner Concept ......... 191
                  8.4.2.2.  Rectification Due to Asymmetric
                            Tunneling Barriers ................ 192
                  8.4.2.3.  Examples .......................... 193
                  8.4.2.4.  Diode-Diode Logic ................. 193
          8.4.3.  Negative Differential Resistance Diodes ..... 294
                  8.4.3.1.  Inverting Logic Using NDR
                            Devices ........................... 195
          8.4.4.  Hysteretic switches ......................... 196
                  8.4.4.1.  The Crossbar Latch: Signal
                            Restoration and Inversion ......... 197
          8.4.5.  Single-Molecule Single-Electron
                  Transistors ................................. 199
          8.4.6.  Artifacts in Molecular Electronic Devices ... 202
                  8.4.6.1.  Sources of Artifacts .............. 201
          8.4.7.  Conclusions ................................. 203
    8.5.  Building Logical Circuits: Assembly of a Large
          Number of Molecular Devices ......................... 203
          8.5.1.  Programmable Logic Arrays Based on
                  Crossbars ................................... 204
          8.5.2.  NanoCell .................................... 206
          8.6.  Challenges and Perspectives ................... 207
    References ................................................ 208

9.  Intermolecular- and Intramolecular-Level Logic Devices .... 213
       Françoise Remacle and Raphael D. Levine

    9.1.  Introduction and Background ......................... 213
          9.1.1.  Quantum Computing ........................... 213
          9.1.2.  Quasiclassical Computing .................... 214
          9.1.3.  A Molecule as a Bistable Element ............ 224
          9.1.4.  Chemical Logic Gates ........................ 215
          9.1.5.  Molecular Combinational Circuits ............ 216
          9.1.6.  Concatenation, Fan-Out and Other Aspects of
                  Integration ................................. 217
          9.1.7.  Finite-State Machines ....................... 217
          9.1.8.  Multi-Valued Logic .......................... 219
    9.2.  Combinational Circuits by Molecular Photophysics .... 219
          9.2.1.  Molecular Logic Implementations of a Half
                  Adder by Photophysics ....................... 221
          9.2.2.  Two Manners of Optically Implementing a
                  Full Adder .................................. 224
    9.3.  Finite-State Machines ............................... 228
          9.3.1.  Optically Addressed Finite-State Machines ... 229
          9.3.2.  Finite-State Machines by Electrical
                  Addressing .................................. 236
    9.4.  Perspectives ........................................ 242
          References .......................................... 244

II.  Architectures and Computational Concepts ................. 249

10.  A Survey of Bio-Inspired and Other Alternative
     Architectures ............................................ 251
        Dan Hammerstrom

    10.1. Introduction ........................................ 251
          10.1.1. Basic Neuroscience .......................... 252
          10.1.2. A Very Simple Neural Model: The Perceptron .. 253
          10.1.3. A Slightly More Complex Neural Model: The
                  Multiple Layer Perceptron ................... 255
          10.1.4. Auto-Association ............................ 256
          10.1.5. The Development of Biologically Inspired
                  Hardware .................................... 257
    10.2. Early Studies in Biologically Inspired Hardware ..... 258
          10.2.1. Flexibility Trade-Offs and Amdhal's Law ..... 260
          10.2.2. Analog Very-Large-Scale Integration (VLSI) .. 263
          10.2.3. Intel's Analog Neural Network Chip and
                  Digital Neural Network Chip ................. 265
          10.2.4. Cellular Neural Networks .................... 266
          10.2.5. Other Analog/Mixed Signal Work .............. 267
          10.2.6. Digital SIMD Parallel Processing ............ 268
          10.2.7. Other Digital Architectures ................. 272
          10.2.8. General Vision .............................. 273
    10.3. Current Directions in Neuro-Inspired Hardware ....... 273
          10.3.1. Moving to a More Sophisticated
                  Neuro-Inspired Hardware ..................... 275
          10.3.2. CMOL ........................................ 278
          10.3.3. An Example: CMOL Nano-Cortex ................ 279
    10.4. Summary and Conclusions ............................. 281
    References ................................................ 282

11. Nanowire-Based Programmable Architectures ................. 287
       André Delion

    11.1. Introduction ........................................ 287
    11.2. Technology .......................................... 289
          11.2.1. Nanowires ................................... 289
          11.2.2. Assembly .................................... 290
          11.2.3. Crosspoints ................................. 290
          11.2.4. Technology Roundup .......................... 291
    11.3. Challenges .......................................... 291
          11.3.1. Regular Assembly ............................ 292
          11.3.2. Nanowire Lengths ............................ 292
          11.3.3. Defective Wires and Crosspoints ............. 292
    11.4. Building Blocks ..................................... 293
          11.4.1. Crosspoint Arrays ........................... 294
                  11.4.1.1. Memory Core ....................... 294
                  11.4.1.2. Programmable, Wired-OR Plane ...... 294
                  11.4.1.3. Programmable Crossbar
                            Interconnect Arrays ............... 295
          11.4.2. Decoders .................................... 296
                  11.4.2.1. NW Coding ......................... 296
                  11.4.2.2. Decoder Assembly .................. 297
                  11.4.2.3. Decoder and Multiplexer Operation . 297
          11.4.3. Restoration and Inversion ................... 298
                  11.4.3.1. NW Inverter and Buffer ............ 299
                  11.4.3.2. Ideal Restoration Array ........... 300
                  11.4.3.3. Restoration Array Construction .... 301
    11.5. Memory Array ........................................ 302
    11.6. Logic Architecture .................................. 303
          11.6.1. Logic ....................................... 304
                  11.6.1.1. Construction ...................... 304
                  11.6.1.2. Logic Circuit ..................... 305
                  11.6.1.3. Programming ....................... 305
          11.6.2. Registers and Sequential Logic .............. 305
                  11.6.2.1. Basic Clocking .................... 305
                  11.6.2.2. Precharge Evaluation .............. 306
          11.6.3. Interconnect ................................ 307
                  11.6.3.1. Basic Idea ........................ 307
                  11.6.3.2. NanoPLA Block ..................... 308
                  11.6.3.3. Interconnect ...................... 309
          11.6.4. CMOS 10 ..................................... 311
          11.6.5. Parameters .................................. 312
    11.7. Defect Tolerance .................................... 313
          11.7.1. NW Sparing .................................. 313
          11.7.2. NW Defect Modeling .......................... 314
          11.7.3. Net NW Yield Calculation .................... 315
          11.7.4. Tolerating Non-Programmable Crosspoints ..... 315
    11.8. Bootstrap Testing ................................... 317
          11.8.1. Discovery ................................... 317
          11.8.2. Programming ................................. 318
          11.8.3. Scaling ..................................... 319
    11.9. Area, Delay, and Energy ............................. 319
          11.9.1. Area ........................................ 319
          11.9.2. Delay ....................................... 320
          11.9.3. Energy and Power ............................ 320
    11.10.Net Area Density .................................... 321
    11.11.Alternate Approaches ................................ 322
    11.12.Research Issues ..................................... 324
    11.13.Conclusions ......................................... 324
    References ................................................ 325

12. Quantum Cellular Automata ................................. 329
       Massimo Macucci

    12.1. Introduction ........................................ 329
    12.2. The Quantum Cellular Automaton Concept .............. 330
          12.2.1. A New Architectural Paradigm for
                  Computation ................................. 330
          12.2.2. From the Ground-State Approach to
                  the Clocked QCA Architecture ................ 336
          12.2.3. Cell Polarization ........................... 338
    12.3. Approaches to QCA Modeling .......................... 339
          12.3.1. Hubbard-Like Hamiltonian .................... 339
          12.3.2. Configuration-Interaction ................... 341
          12.3.3. Semi-Classical Models ....................... 343
          12.3.4. Simulated Annealing ......................... 346
          12.3.5. Existing Simulators ......................... 347
    12.4. Challenges and Characteristics of QCA Technology .... 348
          12.4.1. Operating Temperature ....................... 348
          12.4.2. Fabrication Tolerances ...................... 349
          12.4.3. Limitations for the Operating Speed ......... 350
          12.4.4. Power Dissipation ........................... 353
    12.5. Physical Implementations of the QCA Architecture .... 354
          12.5.1. Implementation with Metallic Junctions ...... 354
          12.5.2. Semiconductor-Based Implementation .......... 355
          12.5.3. Molecular QCA ............................... 357
          12.5.4. Nanomagnetic QCA ............................ 358
          12.5.5. Split-Current QCA ........................... 359
    12.6. Outlook ............................................. 360
    References ................................................ 361

13. Quantum Computation: Principles and Solid-State
    Concepts .................................................. 363
       Martin Weides and Edward Coldobin

    13.1. Introduction to Quantum Computing ................... 363
          13.1.1. The Power of Quantum Computers .............. 364
          13.1.1.1. Sorting and Searching of Databases
                    (Grover's Algorithm) ...................... 365
          13.1.1.2. Factorizing of Large Numbers
                    (Shor's Algorithm) ........................ 365
          13.1.1.3. Cryptography and Quantum Communication .... 366
    13.2. Types of Computation ................................ 366
          13.2.1. Mathematical Definition of Information ...... 366
          13.2.2. Irreversible Computation .................... 367
          13.2.3. Reversible Computation ...................... 367
          13.2.4. Information Carriers ........................ 368
    13.3. Quantum Mechanics and Qubits ........................ 368
          13.3.1. Bit versus Qubit ............................ 369
          13.3.2. Qubit States ................................ 370
          13.3.3. Entanglement ................................ 371
          13.3.4. Physical State .............................. 371
                  13.3.4.1. Measurement ....................... 372
                  13.3.4.2. No-Cloning Theorem ................ 372
    13.4. Operation Scheme .................................... 372
          13.4.1. Quantum Algorithms: Initialization,
                  Execution and Termination ................... 373
          13.4.2. Quantum Gates ............................... 374
    13.5. Quantum Decoherence and Error Correction ............ 374
    13.6. Qubit Requirements .................................. 375
    13.7. Candidates for Qubits ............................... 375
          13.7.1. Nuclear Magnetic Resonance (NMR)-Based
                  Qubits ...................................... 376
          13.7.2. Advantages of Solid-State-Based Qubits ...... 376
          13.7.3. Kane Quantum Computer ....................... 377
          13.7.4. Quantum Dot ................................. 378
          13.7.5. Superconducting Qubits ...................... 378
                  13.7.5.1. Charge Qubits ..................... 379
                  13.7.5.2. Flux Qubits ....................... 379
                  13.7.5.3. Fractional Flux Qubits ............ 380
    13.8. Perspectives ........................................ 382

References .................................................... 382

Index ......................................................... 385


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:19:32 2019. Размер: 26,629 bytes.
Посещение N 2312 c 10.02.2009