| Ji Z.-G. Hydrodynamics and water quality: modeling rivers, lakes, and estuaries. - Hoboken, N.J.: Wiley, 2008. - xxii, 670 p.: ill +1 CD-ROM. - ISBN 978-0-470-13543-3
|
Foreword .................................................... xiii
Preface ....................................................... xv
Acknowledgments ............................................. xvii
1. Introduction.................................................. 1
1.1. Overview ................................................ 1
1.2. Understanding Surface Waters ............................ 4
1.3. Modeling of Surface Waters .............................. 7
1.4. About This Book ........................................ 11
2. Hydrodynamics ............................................... 13
2.1. Hydrodynamic Processes ................................. 14
2.1.1. Water Density ................................... 14
2.1.2. Conservation Laws ............................... 16
2.1.3. Advection and Dispersion ........................ 20
2.1.4. Mass Balance Equation ........................... 25
2.1.5. Atmospheric Forcings ............................ 27
2.1.6. Coriolis Force and Geostrophic Flow ............. 32
2.2. Governing Equations .................................... 35
2.2.1. Basic Approximations ............................ 35
2.2.2. Equations in Cartesian Coordinates .............. 38
2.2.3. Vertical Mixing and Turbulence Models ........... 48
2.2.4. Equations in Curvilinear Coordinates ............ 52
2.2.5. Initial Conditions and Boundary Conditions ...... 58
2.3. Temperature ............................................ 62
2.3.1. Heat flux Components ............................ 65
2.3.2. Temperature Formulations ........................ 73
2.4. Hydrodynamic Modeling .................................. 77
2.4.1. Hydrodynamic Parameters and Data
Requirements .................................... 78
2.4.2. Case Study I: Lake Okeechobee 82
2.4.3. Case Study II: St. Lucie Estuary and
Indian River Lagoon ............................. 98
3. Sediment Transport ......................................... 113
3.1. Overview .............................................. 113
3.1.1. Properties of Sediment ......................... 114
3.1.2. Problems Associated with Sediment .............. 117
3.2. Sediment Processes .................................... 119
3.2.1. Particle Settling .............................. 120
3.2.2. Horizontal Transport of Sediment ............... 122
3.2.3. Resuspension and Deposition .................... 126
3.2.4. Equations for Sediment Transport ............... 128
3.2.5. Turbidity and Secchi Depth ..................... 130
3.3. Cohesive Sediment ..................................... 134
3.3.1. Vertical Profiles of Cohesive Sediment
Concentrations ................................. 136
3.3.2. Flocculation ................................... 138
3.3.3. Settling of Cohesive Sediment .................. 139
3.3.4. Deposition of Cohesive Sediment ................ 143
3.3.5. Resuspension of Cohesive Sediment .............. 145
3.4. Noncohesive Sediment .................................. 149
3.4.1. Shields Diagram ................................ 149
3.4.2. Settling and Equilibrium Concentration ......... 152
3.4.3. Bed Load Transport ............................. 155
3.5. Sediment Bed .......................................... 156
3.5.1. Characteristics of Sediment Bed ................ 157
3.5.2. A Model for Sediment Bed ....................... 159
3.6. Wind Waves ............................................ 162
3.6.1. Wave Processes ................................. 163
3.6.2. Wind Wave Characteristics ...................... 168
3.6.3. Wind Wave Models ............................... 170
3.6.4. Combined Flows of Wind Waves and Currents ...... 172
3.6.5. Case Study: Wind Wave Modeling in
Lake Okeechobee ................................ 174
3.7. Sediment Transport Modeling ........................... 179
3.7.1. Sediment Parameters and Data Requirements ...... 180
3.7.2. Case Study I: Lake Okeechobee .................. 182
3.7.3. Case Study II: Blackstone River ................ 191
4 Pathogens and Toxics ....................................... 201
4.1. Overview .............................................. 201
4.2. Pathogens ............................................. 203
4.2.1. Bacteria, Viruses, and Protozoa ................ 204
4.2.2. Pathogen Indicators ............................ 206
4.2.3. Processes Affecting Pathogens .................. 208
4.3. Toxic Substances ...................................... 210
4.3.1. Toxic Organic Chemicals ........................ 213
4.3.2. Metals ......................................... 214
4.3.3. Sorption and Desorption ........................ 216
4.4. Fate and Transport Processes .......................... 220
4.4.1. Mathematical Formulations ...................... 220
4.4.2. Processes Affecting Fate and Decay ............. 223
4.5. Contaminant Modeling .................................. 229
4.5.1. Case Study I: St. Lucie Estuary and
Indian River Lagoon ............................ 230
4.5.2. Case Study II: Rockford Lake ................... 239
5. Water Quality and Eutrophication ........................... 247
5.1. Overview .............................................. 248
5.1.1. Eutrophication ................................. 248
5.1.2. Algae .......................................... 250
5.1.3. Nutrients ...................................... 253
5.1.4. Dissolved Oxygen ............................... 261
5.1.5. Governing Equations for Water Quality
Processes ...................................... 262
5.2. Algae ................................................. 274
5.2.1. Algal Biomass and Chlorophyll .................. 275
5.2.2. Equations for Algal Processes .................. 277
5.2.3. Algal Growth ................................... 279
5.2.4. Algal Reduction ................................ 285
5.2.5. Silica and Diatom .............................. 289
5.2.6. Periphyton ..................................... 292
5.3 Organic Carbon ........................................ 294
5.3.1. Decomposition of Organic Carbon ................ 296
5.3.2. Equations for Organic Carbon ................... 296
5.3.3. Heterotrophic Respiration and Dissolution ...... 298
5.4. Phosphorus ............................................ 299
5.4.1. Equations for Phosphorus State Variables ....... 302
5.4.2. Phosphorus Processes ........................... 305
5.5 Nitrogen .............................................. 308
5.5.1. Forms of Nitrogen .............................. 309
5.5.2. Equations for Nitrogen State Variables ......... 311
5.5.3. Nitrogen Processes ............................. 317
5.6. Dissolved Oxygen ...................................... 322
5.6.1. Biochemical Oxygen Demand ...................... 325
5.6.2. Processes and Equations of Dissolved Oxygen ... 328
5.6.3. Effects of Photosynthesis and Respiration ...... 331
5.6.4. Reaeration ..................................... 332
5.6.5. Chemical Oxygen Demand ......................... 336
5.7 Sediment Fluxes ....................................... 336
5.7.1. Sediment Diagenesis Model ...................... 338
5.7.2. Depositional Fluxes ............................ 344
5.7.3. Diagenesis Fluxes .............................. 347
5.7.4. Sediment Fluxes ................................ 348
5.7.5. Silica ......................................... 365
5.7.6. Coupling with Sediment Resuspension ............ 366
5.8. Submerged Aquatic Vegetation .......................... 368
5.8.1. Introduction ................................... 369
5.8.2. Equations for a SAV Model ...................... 371
5.8.3. Coupling with the Water Quality Model .......... 378
5.9 Water Quality Modeling ................................ 385
5.9.1. Model Parameters and Data Requirements ......... 387
5.9.2. Case Study I: Lake Okeechobee .................. 390
5.9.3. Case Study II: St. Lucie Estuary and
Indian River Lagoon ............................ 406
6. External Sources and TMDL .................................. 417
6.1. Point Sources and Nonpoint Sources .................... 417
6.2. Atmospheric Deposition ................................ 420
6.3. Wetlands and Groundwater .............................. 424
6.3.1. Wetlands ....................................... 424
6.3.2. Groundwater .................................... 427
6.4. Watershed Processes and TMDL Development .............. 430
6.4.1. Watershed Processes ............................ 430
6.4.2. Total Maximum Daily Load (TMDL) ................ 433
7. Mathematical Modeling and Statistical Analyses ............. 437
7.1. Mathematical Models ................................... 437
7.1.1. Numerical Models ............................... 440
7.1.2. Model Selection ................................ 444
7.1.3. Spatial Resolution and Temporal Resolution ..... 447
7.2 Statistical Analyses .................................. 449
7.2.1. Statistics for Model Performance
Evaluation ..................................... 450
7.2.2. Correlation and Regression ..................... 452
7.2.3. Spectral Analysis .............................. 454
7.2.4. Empirical Orthogonal Function (EOF) ............ 457
7.2.5. EOF Case Study ................................. 460
7.3. Model Calibration and Verification .................... 466
7.3.1. Model Calibration .............................. 467
7.3.2. Model Verification and Validation .............. 470
7.3.3. Sensitivity Analysis ........................... 471
8 Rivers ..................................................... 473
8.1. Characteristics of Rivers ............................. 473
8.2. Hydrodynamic Processes in Rivers ...................... 477
8.2.1. River Flow and the Manning Equation ............ 477
8.2.2. Advection and Dispersion in Rivers ............. 481
8.2.3. Flow over Dams ................................. 482
8.3. Sediment and Water Quality Processes in Rivers ........ 485
8.3.1. Sediment and Contaminants in Rivers ............ 485
8.3.2. Impacts of River Flow on Water Quality ......... 486
8.3.3. Eutrophication and Periphyton in Rivers ........ 488
8.3.4. Dissolved Oxygen in Rivers ..................... 489
8.4. River Modeling ........................................ 492
8.4.1. Case Study I: Blackstone River ................. 493
8.4.2. Case Study II: Susquehanna River ............... 503
9. Lakes and Reservoirs ....................................... 509
9.1. Characteristics of Lakes and Reservoirs ............... 509
9.1.1. Key Factors Controlling a Lake ................. 510
9.1.2. Vertical Stratification ........................ 511
9.1.3. Biological Zones in Lakes ...................... 514
9.1.4. Characteristics of Reservoirs .................. 515
9.1.5. Lake Pollution and Eutrophication .............. 519
9.2. Hydrodynamic Processes ................................ 521
9.2.1. Inflow, Outflow, and Water Budget .............. 522
9.2.2. Wind Forcing and Vertical Circulations ......... 525
9.2.3. Seasonal Variations of Stratification .......... 527
9.2.4. Gyres .......................................... 530
9.2.5. Seiches ........................................ 532
9.3. Sediment and Water Quality Processes in Lakes ......... 538
9.3.1. Sediment Deposition in Reservoirs and
Lakes .......................................... 538
9.3.2. Algae and Nutrient Stratifications ............. 540
9.3.3. Dissolved Oxygen Stratifications ............... 543
9.3.4. Internal Cycling and Limiting Functions in
Shallow Lakes .................................. 546
9.4. Lake Modeling ......................................... 550
9.4.1. Case Study I: Lake Tenkiller ................... 551
9.4.2. Case Study II: Lake Okeechobee ................. 560
10.Estuaries and Coastal Waters ............................... 567
10.1.Introduction .......................................... 567
10.2.Tidal Processes ....................................... 572
10.2.1.Tides .......................................... 572
10.2.2.Tidal Currents ................................. 576
10.2.3.Harmonic Analysis .............................. 580
10.3.Hydrodynamic Processes in Estuaries ................... 584
10.3.1.Salinity ....................................... 585
10.3.2.Estuarine Circulation .......................... 586
10.3.3.Stratifications of Estuaries ................... 588
10.3.4.Flushing Time .................................. 593
10.4.Sediment and Water Quality Processes in Estuaries ..... 600
10.4.1.Sediment Transport under Tidal Forcing ......... 600
10.4.2.Flocculation of Cohesive Sediment and
Sediment Trapping .............................. 601
10.4.3.Eutrophication in Estuaries .................... 604
10.5.Estuarine and Coastal Modeling ........................ 607
10.5.1.Open Boundary Conditions ....................... 609
10.5.2.Case Study I: Morro Bay ........................ 613
10.5.3.Case Study II: St. Lucie Estuary and
Indian River Lagoon ............................ 626
Appendix A: Environmental Fluid Dynamics Code ................. 635
Al. Overview .......................................... 635
A2. Hydrodynamics ..................................... 636
A3. Sediment Transport ................................ 637
A4. Toxic Chemical Transport and Fate ................. 637
A5. Water Quality and Eutrophication .................. 637
A6. Numerical Schemes ................................. 638
A7. Documentation and Application Aids ................ 639
Appendix B: Conversion Factors ................................ 641
Appendix C: Contents of Electronic Files ...................... 645
CI. Channel Model ..................................... 646
C2. St. Lucie Estuary and Indian River Lagoon
Model ............................................. 646
C3. Lake Okeechobee Environmental Model ............... 646
C4. Documentation and Utility Programs ................ 647
Bibliography .................................................. 649
Index ......................................................... 671
|
|