Iacus S.M. Simulation and inference for stochastic differential equations (New York, 2008). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаIacus S.M. Simulation and inference for stochastic differential equations: with R examples. - New York: Springer, 2008. - xviii, 284 p. - (Springer series in statistics). - ISBN 978-0-387-75838-1
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
Preface ....................................................... VII
Notation ..................................................... XVII

1. Stochastic Processes and Stochastic Differential
   Equations .................................................... 1

   1.1.  Elements of probability and random variables ........... 1
         1.1.1.  Mean, variance, and moments .................... 2
         1.1.2.  Change of measure and Radon-Nikodym
                 derivative ..................................... 4
   1.2.  Random number generation ............................... 5
   1.3.  The Monte Carlo method ................................. 5
   1.4.  Variance reduction techniques .......................... 8
         1.4.1.  Preferential sampling .......................... 9
         1.4.2.  Control variables ............................. 12
         1.4.3.  Antithetic sampling ........................... 13
   1.5.  Generalities of stochastic processes .................. 14
         1.5.1.  Filtrations ................................... 14
         1.5.2.  Simple and quadratic variation of a process ... 15
         1.5.3.  Moments, covariance. and increments of
                 stochastic processes .......................... 16
         1.5.4.  Conditional expectation ....................... 16
         1.5.5.  Martingales ................................... 18
   1.6.  Brownian motion ....................................... 18
         1.6.1.  Brownian motion as the limit of a
                 random walk ................................... 20
         1.6.2.  Brownian motion as L2[0,T] expansion .......... 22
         1.6.3.  Brownian motion paths are nowhere
                 differentiable ................................ 24
   1.7.  Geometric Brownian motion ............................. 24
   1.8.  Brownian bridge ....................................... 27
   1.9.  Stochastic integrals and stochastic differential
         equations ............................................. 29
         1.9.1.  Properties of the stochastic integral and
                 Itô processes ................................. 32
   1.10. Diffusion processes ................................... 33
         1.10.1. Ergodicity .................................... 35
         1.10.2. Markovianity .................................. 36
         1.10.3. Quadratic variation ........................... 37
         1.10.4. Infinitesimal generator of a diffusion
                 process ....................................... 37
         1.10.5. How to obtain a martingale from a diffusion
                 process ....................................... 37
   1.11. Itô formula ........................................... 38
         1.11.1. Orders of differentials in the Itô formula .... 38
         1.11.2. Linear stochastic differential equations ...... 39
         1.11.3. Derivation of the SDE for the geometric
                 Brownian motion ............................... 39
         1.11.4. The Lamperti transform ........................ 40
   1.12. Girsanov's theorem and likelihood ratio for
         diffusion processes ................................... 41
   1.13. Some parametric families of stochastic processes ...... 43
         1.13.1. Ornstein-Uhlenbeck or Vasicek process ......... 43
         1.13.2. The Black-Scholes-Merton or geometric
                 Brownian motion model ......................... 46
         1.13.3. The Cox-Ingersoll-Ross model .................. 47
         1.13.4. The CKLS family of models ..................... 49
         1.13.5. The modified CIR and hyperbolic processes ..... 49
         1.13.6. The hyperbolic processes ...................... 50
         1.13.7. The nonlinear mean reversion Aït-Sahalia
                 model ......................................... 50
         1.13.8. Double-well potential ......................... 51
         1.13.9. The Jacobi diffusion process .................. 51
         1.13.10 Aim and Gao model or inverse of Feller's
                 square root model ............................. 52
         1.13.11.Radial Ornstein-Uhlenbeck process ............. 52
         1.13.12.Pearson diffusions ............................ 52
         1.13.13.Another classification of linear
                 stochastic systems ............................ 54
         1.13.14.One epidemic model ............................ 56
         1.13.15.The stochastic cusp catastrophe model ......... 57
         1.13.16.Exponential families of diffusions ............ 58
         1.13.17.Generalized inverse gaussian diffusions ....... 59

2. Numerical Methods for SDE ................................... 61

   2.1.  Euler approximation ................................... 62
         2.1.1.  A note on code vectorization .................. 63
   2.2.  Milstein scheme ....................................... 65
   2.3.  Relationship between Milstein and Euler schemes ....... 66
         2.3.1.  Transform of the geometric Brownian motion .... 68
         2.3.2.  Transform of the Cox-Ingersoll-Ross process ... 68
   2.4.  Implementation of Euler and Milstein schemes:
         the sde.sim function .................................. 69
         2.4.1.  Example of use ................................ 70
   2.5.  The constant elasticity of variance process
         and strange paths ..................................... 72
   2.6.  Predictor-corrector method ............................ 72
   2.7.  Strong convergence for Euler and Milstein schemes ..... 74
   2.8.  KPS method of strong order у = 1.5 .................... 77
   2.9.  Second Milstein scheme ................................ 81
   2.10. Drawing from the transition density ................... 82
         2.10.1. The Ornstein-Uhlenbeck or Vasicek process ..... 83
         2.10.2. The Black and Scholes process ................. 83
         2.10.3. The CTR process ............................... 83
         2.10.4. Drawing from one model of the previous
                 classes ....................................... 84
   2.11. Local linearization method ............................ 85
         2.11.1. The Ozaki method .............................. 85
         2.11.2. The Shoji-Ozaki method ........................ 87
   2.12  Exact sampling ........................................ 91
   2.13  Simulation of diffusion bridges ....................... 98
         2.13.1. The algorithm ................................. 99
   2.14. Numerical considerations about the Euler scheme ...... 101
   2.15. Variance reduction techniques ........................ 102
         2.15.1 Control variables ............................. 103
   2.16. Summary of the function sde.sim ...................... 105
   2.17. Tips and tricks on simulation ........................ 106

3. Parametric Estimation ...................................... 109

   3.1.  Exact likelihood inference ........................... 112
         3.1.1.  The Ornstein-Uhlenbeck or Vasicek model ...... 113
         3.1.2.  The Black and Scholes or geometric
                 Brownian motion model ........................ 117
         3.1.3.  The Cox-Ingersoll-Ross model ................. 119
   3.2.  Pseudo-likelihood methods ............................ 122
         3.2.1.  Euler method ................................. 122
         3.2.2.  Elerian method ............................... 125
         3.2.3.  Local linearization methods .................. 127
         3.2.4.  Comparison of pseudo-likelihoods ............. 128
   3.3   Approximated likelihood methods ...................... 131
         3.3.1.  Kessler method ............................... 131
         3.3.2.  Simulated likelihood method .................. 134
         3.3.3.  Hermite polynomials expansion of the
                 likelihood ................................... 138
   3.4.  Bayesian estimation .................................. 155
   3.5.  Estimating functions ................................. 157
         3.5.1.  Simple estimating functions .................. 157
         3.5.2.  Algorithm 1 for simple estimating
                 functions .................................... 164
         3.5.3.  Algorithm 2 for simple estimating
                 functions .................................... 167
         3.5.4.  Martingale estimating functions .............. 172
         3.5.5.  Polynomial martingale estimating
                 functions .................................... 173
         3.5.6.  Estimating functions based on
                 eigenfunctions ............................... 178
         3.5.7.  Estimating functions based on transform
                 functions .................................... 179
   3.6.  Discretization of continuous-time estimators ......... 179
   3.7.  Generalized method of moments ........................ 182
         3.7.1.  The GMM algorithm ............................ 184
         3.7.2.  GMM. stochastic differential equations,
                 and Euler method ............................. 185
   3.8.  What about multidimensional diffusion processes? ..... 190

4. Miscellaneous Topics ....................................... 191

   4.1.  Model identification via Akaike's information
         criterion ............................................ 191
   4.2.  Nonparametric estimation ............................. 197
         4.2.1.  Stationary density estimation ................ 198
         4.2.2.  Local-time and stationary density
                 estimators ................................... 201
         4.2.3.  Estimation of diffusion and drift
                 coefficients ................................. 202
   4.3.  Change-point estimation .............................. 208
         4.3.1.  Estimation of the change point with
                 unknown drift ................................ 212
         4.3.2.  A famous example ............................. 215

   Appendix A: A brief excursus into R ........................ 217
         A.l. Typing into the R console ....................... 217
         A.2. Assignments ..................................... 218
         A.3. R vectors and linear algebra .................... 220
         A.4. Subsetting ...................................... 221
         A.5. Different types of objects ...................... 222
         A.6. Expressions and fimctions ....................... 225
         A.7. Loops and vectorization ......................... 227
         A.8. Environments .................................... 228
         A.9. Time series objects ............................. 229
         A.10.R Scripts ....................................... 231
         A.11.Miscellanea ..................................... 232

   Appendix B: The sde Package ................................ 233
         BM ................................................... 234
         cpoint ............................................... 235
         DBridge .............................................. 236
         dcElerian ............................................ 237
         dcEuler .............................................. 238
         dcKessler ............................................ 238
         dcOzaki .............................................. 239
         dcShoji .............................................. 240
         dcSim ................................................ 241
         DWJ .................................................. 243
         EULERloglik .......................................... 243
         gmm .................................................. 245
         HPloglik ............................................. 247
         ksmooth .............................................. 248
         linear.mart.ef ....................................... 250
         rcBS ................................................. 251
         rc-CIR ............................................... 252
         rcOU ................................................. 253
         rsCIR ................................................ 254
         rsOU ................................................. 255
         sde.sim .............................................. 256
         sdcAIC ............................................... 259
         SIMloglik ............................................ 261
         simple.ef ............................................ 262
         simple.ef2 ........................................... 264

References .................................................... 267

Index ......................................................... 279


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:19:32 2019. Размер: 16,554 bytes.
Посещение N 1603 c 10.02.2009