1. Basic Convergence Concepts and Theorems ..................... 1
1.1. Some Basic Notation and Convergence Theorems .......... 1
1.2. Three Series Theorem and Kolmogorov's
Zero-One Law .......................................... 6
1.3. Central Limit Theorem and Law of the
Iterated Logarithm ................................... 7
1.4. Further Illustrative Examples ........................ 10
1.5. Exercises ............................................ 12
References ................................................. 16
2. Metrics, Information Theory, Convergence, and Poisson
Approximations ............................................. 19
2.1. Some Common Metrics and Their Usefulness ............. 20
2.2. Convergence in Total Variation and Further
Useful Formulas ...................................... 22
2.3. Information-Theoretic Distances, de Bruijn's
Identity, and Relations to Convergence ............... 24
2.4. Poisson Approximations ............................... 28
2.5. Exercises ............................................ 31
References ................................................. 33
3. More General Weak and Strong Laws
and the Delta Theorem ...................................... 35
3.1. General LLNs and Uniform Strong Law .................. 35
3.2. Median Centering and Kesten's Theorem ................ 38
3.3. The Ergodic Theorem .................................. 39
3.4. Delta Theorem and Examples ........................... 40
3.5. Approximation of Moments ............................. 44
3.6. Exercises ............................................ 45
References ................................................. 47
4. Transformations ............................................ 49
4.1. Variance-Stabilizing Transformations ................. 50
4.2. Examples ............................................. 51
4.3. Bias Correction of the VST ........................... 54
4.4. Symmetrizing Transformations ......................... 57
4.5. VST or Symmetrizing Transform? ....................... 59
4.6. Exercises ............................................ 59
References ................................................. 61
5. More General Central Limit Theorems ........................ 63
5.1. The Independent Not IID Case and a Key Example ....... 63
5.2. CLT without a Variance ............................... 66
5.3. Combinatorial CLT .................................... 67
5.4. CLT for Exchangeable Sequences ....................... 68
5.5. CLT for a Random Number of Summands .................. 70
5.6. Infinite Divisibility and Stable Laws ................ 71
5.7. Exercises ............................................ 77
References ................................................. 80
6. Moment Convergence and Uniform Integrability ............... 83
6.1. Basic Results ........................................ 83
6.2. The Moment Problem ................................... 85
6.3. Exercises ............................................ 88
References ................................................. 89
7. Sample Percentiles and Order Statistics .................... 91
7.1. Asymptotic Distribution of One Order Statistic ....... 92
7.2. Joint Asymptotic Distribution of Several
Order Statistics ..................................... 93
7.3. Bahadur Representations .............................. 94
7.4. Confidence Intervals for Quantiles ................... 96
7.5. Regression Quantiles ................................. 97
7.6. Exercises ............................................ 98
References ................................................ 100
8. Sample Extremes ........................................... 101
8.1. Sufficient Conditions ............................... 101
8.2. Characterizations ................................... 105
8.3. Limiting Distribution of the Sample Range ........... 107
8.4. Multiplicative Strong Law ........................... 108
8.5. Additive Strong Law ................................. 109
8.6. Dependent Sequences ................................. 1ll
8.7. Exercises ........................................... 114
References ................................................ 116
9 Central Limit Theorems for Dependent Sequences ............ 119
9.1. Stationary w-dependence ............................. 119
9.2. Sampling without Replacement ........................ 121
9.3. Martingales and Examples ............................ 123
9.4. The Martingale and Reverse Martingale CLTs .......... 126
9.5. Exercises ........................................... 127
References ................................................ 129
10. Central Limit Theorem for Markov Chains ................... 131
10.1. Notation and Basic Definitions ...................... 131
10.2. Normal Limits ....................................... 132
10.3. Nonnormal Limits .................................... 135
10.4. Convergence to Stationarity: Diaconis-
Stroock-Fill Bound .................................. 135
10.5. Exercises ........................................... 137
References ................................................ 139
11. Accuracy of Central Limit Theorems ........................ 141
11.1. Uniform Bounds: Berry-Esseen Inequality ............. 142
11.2. Local Bounds ........................................ 144
11.3. The Multidimensional Berry-Esseen Theorems .......... 145
11.4. Other Statistics .................................... 146
11.5. Exercises ........................................... 147
References ................................................ 149
12. Invariance Principles ..................................... 151
12.1. Motivating Examples ................................. 152
12.2. Two Relevant Gaussian Processes ..................... 153
12.3. The Erdos-Kac Invariance Principle .................. 156
12.4. Invariance Principles, Donsker's Theorem,
and the KMT Construction ............................ 157
12.5. Invariance Principle for Empirical
Processes ........................................... 161
12.6. Extensions of Donsker's Principle and
Vapnik-Chervonenkis Classes ......................... 163
12.7. Glivenko-Cantelli Theorem for VC Classes ............ 164
12.8. CLTs for Empirical Measures and Applications ........ 167
12.8.1. Notation and Formulation .................... 168
12.8.2. Entropy Bounds and Specific CLTs ............ 169
12.9. Dependent Sequences: Martingales, Mixing,
and Short-Range Dependence .......................... 172
12.10.Weighted Empirical Processes and
Approximations ...................................... 175
12.11.Exercises ........................................... 178
References ................................................ 180
13. Edgeworth Expansions and Cumulants ........................ 185
13.1. Expansion for Means ................................. 186
13.2. Using the Edgeworth Expansion ....................... 188
13.3. Edgeworth Expansion for Sample Percentiles .......... 189
13.4. Edgeworth Expansion for the t-statistic ............. 190
13.5. Cornish-Fisher Expansions ........................... 192
13.6 Cumulants and Fisher's k-statistics ................. 194
13.7. Exercises ........................................... 198
References ................................................ 200
14 Saddlepoint Approximations ................................ 203
14.1. Approximate Evaluation of Integrals ................. 204
14.2. Density of Means and Exponential Tilting ............ 208
14.2.1. Derivation by Edgeworth Expansion and
Exponential Tilting ......................... 210
14.3. Some Examples ....................................... 211
14.4. Application to Exponential Family and the
Magic Formula ....................................... 213
14.5. Tail Area Approximation and the Lugannani-Rice
Formula ............................................. 213
14.6. Edgeworth vs. Saddlepoint vs. Chi-square
Approximation ....................................... 217
14.7. Tail Areas for Sample Percentiles ................... 218
14.8. Quantile Approximation and Inverting
the Lugannani-Rice Formula .......................... 219
14.9. The Multidimensional Case ........................... 221
14.10.Exercises ........................................... 222
References ................................................ 223
15. U-statistics .............................................. 225
15.1. Examples ............................................ 226
15.2. Asymptotic Distribution of U-statistics ............. 227
15.3. Moments of U-statistics and the Martingale
Structure ........................................... 229
15.4. Edgeworth Expansions ................................ 230
15.5. Nonnormal Limits .................................... 232
15.6. Exercises ........................................... 232
References ................................................ 234
16 Maximum Likelihood Estimates .............................. 235
16.1. Some Examples ....................................... 235
16.2. Inconsistent MLEs ................................... 239
16.3. MLEs in the Exponential Family ...................... 240
16.4. More General Cases and Asymptotic Normality ......... 242
16.5. Observed and Expected Fisher Information ............ 244
16.6. Edgeworth Expansions for MLEs ....................... 245
16.7. Asymptotic Optimality of the MLE and
Superefficiency ..................................... 247
16.8. Hajek-LeCam Convolution Theorem ..................... 249
16.9. Loss of Information and Efron's Curvature ........... 251
16.10.Exercises ........................................... 253
References ................................................ 258
17 M Estimates ............................................... 259
17.1. Examples ............................................ 260
17.2. Consistency and Asymptotic Normality ................ 262
17.3. Bahadur Expansion of M Estimates .................... 265
17.4. Exercises ........................................... 267
References ................................................ 268
18 The Trimmed Mean .......................................... 271
18.1. Asymptotic Distribution and the Bahadur
Representation ...................................... 271
18.2. Lower Bounds on Efficiencies ........................ 273
18.3. Multivariate Trimmed Mean ........................... 273
18.4. The 10-20-30-40 Rule ................................ 275
18.5. Exercises ........................................... 277
References ................................................ 278
19 Multivariate Location Parameter and Multivariate
Medians ................................................... 279
19.1. Notions of Symmetry of Multivariate Data ............ 279
19.2. Multivariate Medians ................................ 280
19.3. Asymptotic Theory for Multivariate Medians .......... 282
19.4. The Asymptotic Covariance Matrix .................... 283
19.5. Asymptotic Covariance Matrix of the L1 Median ....... 284
19.6. Exercises ........................................... 287
References ................................................ 288
20 Bayes Procedures and Posterior Distributions .............. 289
20.1. Motivating Examples ................................. 290
20.2. Bernstein-von Mises Theorem ......................... 291
20.3. Posterior Expansions ................................ 294
20.4. Expansions for Posterior Mean, Variance,
and Percentiles ..................................... 298
20.5. The Tierney-Kadane Approximations ................... 300
20.6. Frequentist Approximation of Posterior
Summaries ........................................... 302
20.7. Consistency of Posteriors ........................... 304
20.8. The Difference between Bayes Estimates and
the MLE ............................................. 305
20.9. Using the Brown Identity to Obtain Bayesian
Asymptotics ......................................... 306
20.10.Testing ............................................. 311
20.11.Interval and Set Estimation ......................... 312
20.12.Infinite-Dimensional Problems
and the Diaconis-Freedman Results ................... 314
20.13.Exercises ........................................... 317
References ................................................ 320
21. Testing Problems .......................................... 323
21.1. Likelihood Ratio Tests .............................. 323
21.2. Examples ............................................ 324
21.3. Asymptotic Theory of Likelihood Ratio Test
Statistics .......................................... 334
21.4. Distribution under Alternatives ..................... 336
21.5. Bartlett Correction ................................. 338
21.6. The Wald and Rao Score Tests ........................ 339
21.7. Likelihood Ratio Confidence Intervals ............... 340
21.8. Exercises ........................................... 342
References ................................................ 344
22 Asymptotic Efficiency in Testing .......................... 347
22.1. Pitman Efficiencies ................................. 348
22.2. Bahadur Slopes and Bahadur Efficiency ............... 353
22.3. Bahadur Slopes of U-statistics ...................... 361
22.4. Exercises ........................................... 362
References ................................................ 363
23 Some General Large-Deviation Results ...................... 365
23.1. Generalization of the Cramer-Chernoff Theorem ....... 365
23.2. The Gartner-Ellis Theorem ........................... 367
23.3. Large Deviation for Local Limit Theorems ............ 370
23.4. Exercises ........................................... 374
References ................................................ 375
24. Classical Nonparametrics .................................. 377
24.1. Some Early Illustrative Examples .................... 378
24.2. Sign Test ........................................... 380
24.3. Consistency of the Sign Test ........................ 381
24.4. Wilcoxon Signed-Rank Test ........................... 383
24.5. Robustness of the t Confidence Interval ............. 388
24.6. The Bahadur-Savage Theorem .......................... 393
24.7. Kolmogorov-Smirnov and Anderson Confidence
Intervals ........................................... 394
24.8. Hodges-Lehmann Confidence Interval .................. 396
24.9. Power of the Wilcoxon Test .......................... 397
24.10.Exercises ........................................... 398
References ................................................ 399
25. Two-Sample Problems ....................................... 401
25.1. Behrens-Fisher Problem .............................. 402
25.2. Wilcoxon Rank Sum and Mann-Whitney Test ............. 405
25.3. Two-Sample U-statistics and Power
Approximations ...................................... 408
25.4. Hettmansperger's Generalization ..................... 410
25.5. The Nonparametric Behrens-Fisher Problem ............ 412
25.6. Robustness of the Mann-Whitney Test ................. 415
25.7. Exercises ........................................... 417
References ................................................ 418
26. Goodness of Fit ........................................... 421
26.1. Kolmogorov-Smirnov and Other Tests Based onFn ....... 422
26.2. Computational Formulas .............................. 422
26.3. Some Heuristics ..................................... 423
26.4. Asymptotic Null Distributions of D1, C1,
An, and V1 .......................................... 424
26.5. Consistency and Distributions under
Alternatives ........................................ 425
26.6. Finite Sample Distributions and Other
EDF-Based Tests ........................................... 426
26.7. The Berk-Jones Procedure ............................ 428
26.8. φ-Divergences and the Jager-Wellner Tests ........... 429
26.9. The Two-Sample Case ................................. 431
26.10.Tests for Normality ................................. 434
26.11.Exercises ........................................... 436
References ................................................ 438
27. Chi-square Tests for Goodness of Fit ...................... 441
27.1. The Pearson X2 Test ................................. 441
27.2. Asymptotic Distribution of Pearson's
Chi-square .......................................... 442
27.3. Asymptotic Distribution under Alternatives
and Consistency ..................................... 442
27.4. Choice of k ......................................... 443
27.5. Recommendation of Mann and Wald ..................... 445
27.6. Power at Local Alternatives and Choice of k ......... 445
27.7. Exercises ........................................... 448
References ................................................ 449
28. Goodness of Fit with Estimated Parameters ................. 451
28.1. Preliminary Analysis by Stochastic Expansion ........ 452
28.2. Asymptotic Distribution of EDF-Based
Statistics for Composite Nulls ...................... 453
28.3. Chi-square Tests with Estimated Parameters
and the Chernoff-Lehmann Result ........................... 455
28.4. Chi-square Tests with Random Cells .................. 457
28.5. Exercises ........................................... 457
References ................................................ 458
29. The Bootstrap ............................................. 461
29.1. Bootstrap Distribution and the Meaning
of Consistency ............................................ 462
29.2. Consistency in the Kolmogorov and
Wasserstein Metrics ................................. 464
29.3. Delta Theorem for the Bootstrap ..................... 468
29.4. Second-Order Accuracy of the Bootstrap .............. 468
29.5. Other Statistics .................................... 471
29.6. Some Numerical Examples ............................. 473
29.7. Failure of the Bootstrap ............................ 475
29.8. m out of n Bootstrap ................................ 476
29.9. Bootstrap Confidence Intervals ...................... 478
29.10.Some Numerical Examples ............................. 482
29.11.Bootstrap Confidence Intervals for Quantiles ........ 483
29.12.Bootstrap in Regression ............................. 483
29.13.Residual Bootstrap .................................. 484
29.14.Confidence Intervals ................................ 485
29.15.Distribution Estimates in Regression ................ 486
29.16.Bootstrap for Dependent Data ........................ 487
29.17.Consistent Bootstrap for Stationary
Autoregression ...................................... 488
29.18.Block Bootstrap Methods ............................. 489
29.19.Optimal Block Length ................................ 491
29.20.Exercises ........................................... 492
References ................................................ 495
30. Jackknife ................................................. 499
30.1. Notation and Motivating Examples .................... 499
30.2. Bias Correction by the Jackknife .................... 502
30.3. Variance Estimation ................................. 503
30.4. Delete-d Jackknife and von Mises Functionals ........ 504
30.5. A Numerical Example ................................. 507
30.6. Jackknife Histogram ................................. 508
30.7. Exercises ........................................... 511
References ................................................ 512
31. Permutation Tests ......................................... 513
31.1. General Permutation Tests and Basic Group
Theory .............................................. 514
31.2. Exact Similarity of Permutation Tests ............... 516
31.3. Power of Permutation Tests .......................... 519
31.4. Exercises ........................................... 520
References ................................................ 521
32 Density Estimation ........................................ 523
32.1. Basic Terminology and Some Popular Methods .......... 523
32.2. Measures of the Quality of Density Estimates ........ 526
32.3. Certain Negative Results ............................ 526
32.4. Minimaxity Criterion ................................ 529
32.5. Performance of Some Popular Methods: A Preview ...... 530
32.6. Rate of Convergence of Histograms ................... 531
32.7. Consistency of Kernel Estimates ..................... 533
32.8. Order of Optimal Bandwidth and Superkernels ......... 535
32.9. The Epanechnikov Kernel ............................. 538
32.10.Choice of Bandwidth by Cross Validation ............. 539
32.10.1. Maximum Likelihood CV ...................... 540
32.10.2. Least Squares CV ........................... 542
32.10.3. Stone's Result ............................. 544
32.11.Comparison of Bandwidth Selectors
and Recommendations ................................. 545
32.12.L1 Optimal Bandwidths ............................... 547
32.13.Variable Bandwidths ................................. 548
32.14.Strong Uniform Consistency and Confidence
Bands ............................................... 550
32.15.Multivariate Density Estimation and Curse
of Dimensionality ................................... 552
32.15.1.Kernel Estimates and Optimal Bandwidths ..... 556
32.16.Estimating a Unimodal Density and the
Grenander Estimate .................................. 558
32.16.1.The Grenander Estimate ...................... 558
32.17.Mode Estimation and Chernoff's Distribution ......... 561
32.18.Exercises ........................................... 564
References ................................................ 568
33 Mixture Models and Nonparametric Deconvolution ............ 571
33.1. Mixtures as Dense Families .......................... 572
33.2. Distributions and Other Gaussian Mixtures
as Useful Models .................................... 573
33.3. Estimation Methods and Their Properties:
Finite Mixtures ..................................... 577
33.3.1. Maximum Likelihood .......................... 577
33.3.2. Minimum Distance Method ..................... 578
33.3.3. Moment Estimates ............................ 579
33.4. Estimation in General Mixtures ...................... 580
33.5. Strong Consistency and Weak Convergence
of the MLE .......................................... 582
33.6. Convergence Rates for Finite Mixtures
and Nonparametric Deconvolution ..................... 584
33.6.1 Nonparametric Deconvolution .................. 585
33.7. Exercises ........................................... 587
References ................................................ 589
34. High-Dimensional Inference and False Discovery ............ 593
34.1. Chi-square Tests with Many Cells and Sparse
Multinomials ........................................ 594
34.2. Regression Models with Many Parameters:
The Portnoy Paradigm ................................ 597
34.3. Multiple Testing and False Discovery:
Early Developments .................................. 599
34.4. False Discovery: Definitions, Control, and
the Benjamini-Hochberg Rule ......................... 601
34.5. Distribution Theory for False Discoveries
and Poisson and First-Passage Asymptotics ........... 604
34.6. Newer FDR Controlling Procedures .................... 606
34.6.1. Storey-Taylor-Siegmund Rule ................. 606
34.7. Higher Criticism and the Donoho-Jin
Developments ........................................ 608
34.8. False Nondiscovery and Decision Theory
Formulation ......................................... 611
34.8.1. Genovese-Wasserman Procedure ................ 612
34.9. Asymptotic Expansions ............................... 614
34.10.Lower Bounds on the Number of False Hypotheses ...... 616
34.10.1.Biihlmann-Meinshausen-Rice Method ........... 617
34.11.The Dependent Case and the Hall-Jin Results ......... 620
34.11.1.Increasing and Multivariate Totally
Positive Distributions ...................... 620
34.11.2.Higher Criticism under Dependence:
Hall-Jin Results ............................ 623
34.12.Exercises ........................................... 625
References ................................................ 628
35. A Collection of Inequalities in Probability, Linear Algebra,
and Analysis .............................................. 633
35.1. Probability Inequalities ............................ 633
35.1.1. Improved Bonferroni Inequalities ............ 633
35.1.2. Concentration Inequalities .................. 634
35.1.3. Tail Inequalities for Specific
Distributions ............................... 639
35.1.4. Inequalities under Unimodality .............. 641
35.1.5. Moment and Monotonicity Inequalities ........ 643
35.1.6. Inequalities in Order Statistics ............ 652
35.1.7. Inequalities for Normal Distributions ....... 655
35.1.8. Inequalities for Binomial and Poisson
Distributions ............................... 656
35.1.9. Inequalities in the Central Limit
Theorem ..................................... 658
35.1.10.Martingale Inequalities ..................... 661
35.2 Matrix Inequalities ................................. 663
35.2.1. Rank, Determinant, and Trace
Inequalities ................................ 663
35.2.2. Eigenvalue and Quadratic Form
Inequalities ................................ 667
35.3. Series and Polynomial Inequalities .................. 671
35.4. Integral and Derivative Inequalities ................ 675
Glossary of Symbols ........................................... 689
Index ......................................................... 693
|