DasGupta A. Asymptotic theory of statistics and probability (New-York, 2008). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаDasGupta A. Asymptotic theory of statistics and probability. - New-York: Springer, 2008. - xxvii, 722 p. - (Springer texts in statistics). - ISBN 978-0-387-75970-8
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
1.  Basic Convergence Concepts and Theorems ..................... 1
    1.1.  Some Basic Notation and Convergence Theorems .......... 1
    1.2.  Three Series Theorem and Kolmogorov's
          Zero-One Law .......................................... 6
    1.3.  Central Limit Theorem and Law of the
          Iterated Logarithm  ................................... 7
    1.4.  Further Illustrative Examples ........................ 10
    1.5.  Exercises ............................................ 12
    References ................................................. 16

2.  Metrics, Information Theory, Convergence, and Poisson
    Approximations ............................................. 19
    2.1.  Some Common Metrics and Their Usefulness ............. 20
    2.2.  Convergence in Total Variation and Further
          Useful Formulas ...................................... 22
    2.3.  Information-Theoretic Distances, de Bruijn's
          Identity, and Relations to Convergence ............... 24
    2.4.  Poisson Approximations ............................... 28
    2.5.  Exercises ............................................ 31
    References ................................................. 33

3.  More General Weak and Strong Laws
    and the Delta Theorem ...................................... 35
    3.1.  General LLNs and Uniform Strong Law .................. 35
    3.2.  Median Centering and Kesten's Theorem ................ 38
    3.3.  The Ergodic Theorem .................................. 39
    3.4.  Delta Theorem and Examples ........................... 40
    3.5.  Approximation of Moments ............................. 44
    3.6.  Exercises ............................................ 45
    References ................................................. 47

4.  Transformations ............................................ 49
    4.1.  Variance-Stabilizing Transformations ................. 50
    4.2.  Examples ............................................. 51
    4.3.  Bias Correction of the VST ........................... 54
    4.4.  Symmetrizing Transformations ......................... 57
    4.5.  VST or Symmetrizing Transform? ....................... 59
    4.6.  Exercises ............................................ 59
    References ................................................. 61

5.  More General Central Limit Theorems ........................ 63
    5.1.  The Independent Not IID Case and a Key Example ....... 63
    5.2.  CLT without a Variance ............................... 66
    5.3.  Combinatorial CLT .................................... 67
    5.4.  CLT for Exchangeable Sequences ....................... 68
    5.5.  CLT for a Random Number of Summands .................. 70
    5.6.  Infinite Divisibility and Stable Laws ................ 71
    5.7.  Exercises ............................................ 77
    References ................................................. 80

6.  Moment Convergence and Uniform Integrability ............... 83
    6.1.  Basic Results ........................................ 83
    6.2.  The Moment Problem ................................... 85
    6.3.  Exercises ............................................ 88
    References ................................................. 89

7.  Sample Percentiles and Order Statistics .................... 91
    7.1.  Asymptotic Distribution of One Order Statistic ....... 92
    7.2.  Joint Asymptotic Distribution of Several
          Order Statistics ..................................... 93
    7.3.  Bahadur Representations .............................. 94
    7.4.  Confidence Intervals for Quantiles ................... 96
    7.5.  Regression Quantiles ................................. 97
    7.6.  Exercises ............................................ 98
    References ................................................ 100

8.  Sample Extremes ........................................... 101
    8.1.  Sufficient Conditions ............................... 101
    8.2.  Characterizations ................................... 105
    8.3.  Limiting Distribution of the Sample Range ........... 107
    8.4.  Multiplicative Strong Law ........................... 108
    8.5.  Additive Strong Law ................................. 109
    8.6.  Dependent Sequences ................................. 1ll
    8.7.  Exercises ........................................... 114
    References ................................................ 116

9   Central Limit Theorems for Dependent Sequences ............ 119
    9.1.  Stationary w-dependence ............................. 119
    9.2.  Sampling without Replacement ........................ 121
    9.3.  Martingales and Examples ............................ 123
    9.4.  The Martingale and Reverse Martingale CLTs .......... 126
    9.5.  Exercises ........................................... 127
    References ................................................ 129

10. Central Limit Theorem for Markov Chains ................... 131
    10.1. Notation and Basic Definitions ...................... 131
    10.2. Normal Limits ....................................... 132
    10.3. Nonnormal Limits .................................... 135
    10.4. Convergence to Stationarity: Diaconis-
          Stroock-Fill Bound .................................. 135
    10.5. Exercises ........................................... 137
    References ................................................ 139

11. Accuracy of Central Limit Theorems ........................ 141
    11.1. Uniform Bounds: Berry-Esseen Inequality ............. 142
    11.2. Local Bounds ........................................ 144
    11.3. The Multidimensional Berry-Esseen Theorems .......... 145
    11.4. Other Statistics .................................... 146
    11.5. Exercises ........................................... 147
    References ................................................ 149

12. Invariance Principles ..................................... 151
    12.1. Motivating Examples ................................. 152
    12.2. Two Relevant Gaussian Processes ..................... 153
    12.3. The Erdos-Kac Invariance Principle .................. 156
    12.4. Invariance Principles, Donsker's Theorem,
          and the KMT Construction ............................ 157
    12.5. Invariance Principle for Empirical
          Processes ........................................... 161
    12.6. Extensions of Donsker's Principle and
          Vapnik-Chervonenkis Classes ......................... 163
    12.7. Glivenko-Cantelli Theorem for VC Classes ............ 164
    12.8. CLTs for Empirical Measures and Applications ........ 167
          12.8.1. Notation and Formulation .................... 168
          12.8.2. Entropy Bounds and Specific CLTs ............ 169
    12.9. Dependent Sequences: Martingales, Mixing,
          and Short-Range Dependence .......................... 172
    12.10.Weighted Empirical Processes and
          Approximations ...................................... 175
    12.11.Exercises ........................................... 178
    References ................................................ 180

13. Edgeworth Expansions and Cumulants ........................ 185
    13.1. Expansion for Means ................................. 186
    13.2. Using the Edgeworth Expansion ....................... 188
    13.3. Edgeworth Expansion for Sample Percentiles .......... 189
    13.4. Edgeworth Expansion for the t-statistic ............. 190
    13.5. Cornish-Fisher Expansions ........................... 192
    13.6  Cumulants and Fisher's k-statistics ................. 194
    13.7. Exercises ........................................... 198
    References ................................................ 200

14  Saddlepoint Approximations ................................ 203
    14.1. Approximate Evaluation of Integrals ................. 204
    14.2. Density of Means and Exponential Tilting ............ 208
          14.2.1. Derivation by Edgeworth Expansion and
                  Exponential Tilting ......................... 210
    14.3. Some Examples ....................................... 211
    14.4. Application to Exponential Family and the
          Magic Formula ....................................... 213
    14.5. Tail Area Approximation and the Lugannani-Rice
          Formula ............................................. 213
    14.6. Edgeworth vs. Saddlepoint vs. Chi-square
          Approximation ....................................... 217
    14.7. Tail Areas for Sample Percentiles ................... 218
    14.8. Quantile Approximation and Inverting
          the Lugannani-Rice Formula .......................... 219
    14.9. The Multidimensional Case ........................... 221
    14.10.Exercises ........................................... 222
    References ................................................ 223

15. U-statistics .............................................. 225
    15.1. Examples ............................................ 226
    15.2. Asymptotic Distribution of U-statistics ............. 227
    15.3. Moments of U-statistics and the Martingale
          Structure ........................................... 229
    15.4. Edgeworth Expansions ................................ 230
    15.5. Nonnormal Limits .................................... 232
    15.6. Exercises ........................................... 232
    References ................................................ 234

16  Maximum Likelihood Estimates .............................. 235
    16.1. Some Examples ....................................... 235
    16.2. Inconsistent MLEs ................................... 239
    16.3. MLEs in the Exponential Family ...................... 240
    16.4. More General Cases and Asymptotic Normality ......... 242
    16.5. Observed and Expected Fisher Information ............ 244
    16.6. Edgeworth Expansions for MLEs ....................... 245
    16.7. Asymptotic Optimality of the MLE and
          Superefficiency ..................................... 247
    16.8. Hajek-LeCam Convolution Theorem ..................... 249
    16.9. Loss of Information and Efron's Curvature ........... 251
    16.10.Exercises ........................................... 253
    References ................................................ 258

17  M Estimates ............................................... 259
    17.1. Examples ............................................ 260
    17.2. Consistency and Asymptotic Normality ................ 262
    17.3. Bahadur Expansion of M Estimates .................... 265
    17.4. Exercises ........................................... 267
    References ................................................ 268

18  The Trimmed Mean .......................................... 271
    18.1. Asymptotic Distribution and the Bahadur
          Representation ...................................... 271
    18.2. Lower Bounds on Efficiencies ........................ 273
    18.3. Multivariate Trimmed Mean ........................... 273
    18.4. The 10-20-30-40 Rule ................................ 275
    18.5. Exercises ........................................... 277
    References ................................................ 278

19  Multivariate Location Parameter and Multivariate
    Medians ................................................... 279
    19.1. Notions of Symmetry of Multivariate Data ............ 279
    19.2. Multivariate Medians ................................ 280
    19.3. Asymptotic Theory for Multivariate Medians .......... 282
    19.4. The Asymptotic Covariance Matrix .................... 283
    19.5. Asymptotic Covariance Matrix of the L1 Median ....... 284
    19.6. Exercises ........................................... 287
    References ................................................ 288

20  Bayes Procedures and Posterior Distributions .............. 289
    20.1. Motivating Examples ................................. 290
    20.2. Bernstein-von Mises Theorem ......................... 291
    20.3. Posterior Expansions ................................ 294
    20.4. Expansions for Posterior Mean, Variance,
          and Percentiles ..................................... 298
    20.5. The Tierney-Kadane Approximations ................... 300
    20.6. Frequentist Approximation of Posterior
          Summaries ........................................... 302
    20.7. Consistency of Posteriors ........................... 304
    20.8. The Difference between Bayes Estimates and
          the MLE ............................................. 305
    20.9. Using the Brown Identity to Obtain Bayesian
          Asymptotics ......................................... 306
    20.10.Testing ............................................. 311
    20.11.Interval and Set Estimation ......................... 312
    20.12.Infinite-Dimensional Problems
          and the Diaconis-Freedman Results ................... 314
    20.13.Exercises ........................................... 317
    References ................................................ 320

21. Testing Problems .......................................... 323
    21.1. Likelihood Ratio Tests .............................. 323
    21.2. Examples ............................................ 324
    21.3. Asymptotic Theory of Likelihood Ratio Test
          Statistics .......................................... 334
    21.4. Distribution under Alternatives ..................... 336
    21.5. Bartlett Correction ................................. 338
    21.6. The Wald and Rao Score Tests ........................ 339
    21.7. Likelihood Ratio Confidence Intervals ............... 340
    21.8. Exercises ........................................... 342
    References ................................................ 344

22  Asymptotic Efficiency in Testing .......................... 347
    22.1. Pitman Efficiencies ................................. 348
    22.2. Bahadur Slopes and Bahadur Efficiency ............... 353
    22.3. Bahadur Slopes of U-statistics ...................... 361
    22.4. Exercises ........................................... 362
    References ................................................ 363

23  Some General Large-Deviation Results ...................... 365
    23.1. Generalization of the Cramer-Chernoff Theorem ....... 365
    23.2. The Gartner-Ellis Theorem ........................... 367
    23.3. Large Deviation for Local Limit Theorems ............ 370
    23.4. Exercises ........................................... 374
    References ................................................ 375

24. Classical Nonparametrics .................................. 377
    24.1. Some Early Illustrative Examples .................... 378
    24.2. Sign Test ........................................... 380
    24.3. Consistency of the Sign Test ........................ 381
    24.4. Wilcoxon Signed-Rank Test ........................... 383
    24.5. Robustness of the t Confidence Interval ............. 388
    24.6. The Bahadur-Savage Theorem .......................... 393
    24.7. Kolmogorov-Smirnov and Anderson Confidence
          Intervals ........................................... 394
    24.8. Hodges-Lehmann Confidence Interval .................. 396
    24.9. Power of the Wilcoxon Test .......................... 397
    24.10.Exercises ........................................... 398
    References ................................................ 399

25. Two-Sample Problems ....................................... 401
    25.1. Behrens-Fisher Problem .............................. 402
    25.2. Wilcoxon Rank Sum and Mann-Whitney Test ............. 405
    25.3. Two-Sample U-statistics and Power
          Approximations ...................................... 408
    25.4. Hettmansperger's Generalization ..................... 410
    25.5. The Nonparametric Behrens-Fisher Problem ............ 412
    25.6. Robustness of the Mann-Whitney Test ................. 415
    25.7. Exercises ........................................... 417
    References ................................................ 418

26. Goodness of Fit ........................................... 421
    26.1. Kolmogorov-Smirnov and Other Tests Based onFn ....... 422
    26.2. Computational Formulas .............................. 422
    26.3. Some Heuristics ..................................... 423
    26.4. Asymptotic Null Distributions of D1, C1,
          An, and V1 .......................................... 424
    26.5. Consistency and Distributions under
          Alternatives ........................................ 425
    26.6. Finite Sample Distributions and Other
    EDF-Based Tests ........................................... 426
    26.7. The Berk-Jones Procedure ............................ 428
    26.8. φ-Divergences and the Jager-Wellner Tests ........... 429
    26.9. The Two-Sample Case ................................. 431
    26.10.Tests for Normality ................................. 434
    26.11.Exercises ........................................... 436
    References ................................................ 438

27. Chi-square Tests for Goodness of Fit ...................... 441
    27.1. The Pearson X2 Test ................................. 441
    27.2. Asymptotic Distribution of Pearson's
          Chi-square .......................................... 442
    27.3. Asymptotic Distribution under Alternatives
          and Consistency ..................................... 442
    27.4. Choice of k ......................................... 443
    27.5. Recommendation of Mann and Wald ..................... 445
    27.6. Power at Local Alternatives and Choice of k ......... 445
    27.7. Exercises ........................................... 448
    References ................................................ 449

28. Goodness of Fit with Estimated Parameters ................. 451
    28.1. Preliminary Analysis by Stochastic Expansion ........ 452
    28.2. Asymptotic Distribution of EDF-Based
          Statistics for Composite Nulls ...................... 453
    28.3. Chi-square Tests with Estimated Parameters
    and the Chernoff-Lehmann Result ........................... 455
    28.4. Chi-square Tests with Random Cells .................. 457
    28.5. Exercises ........................................... 457
    References ................................................ 458

29. The Bootstrap ............................................. 461
    29.1. Bootstrap Distribution and the Meaning
    of Consistency ............................................ 462
    29.2. Consistency in the Kolmogorov and
          Wasserstein Metrics ................................. 464
    29.3. Delta Theorem for the Bootstrap ..................... 468
    29.4. Second-Order Accuracy of the Bootstrap .............. 468
    29.5. Other Statistics .................................... 471
    29.6. Some Numerical Examples ............................. 473
    29.7. Failure of the Bootstrap ............................ 475
    29.8. m out of n Bootstrap ................................ 476
    29.9. Bootstrap Confidence Intervals ...................... 478
    29.10.Some Numerical Examples ............................. 482
    29.11.Bootstrap Confidence Intervals for Quantiles ........ 483
    29.12.Bootstrap in Regression ............................. 483
    29.13.Residual Bootstrap .................................. 484
    29.14.Confidence Intervals ................................ 485
    29.15.Distribution Estimates in Regression ................ 486
    29.16.Bootstrap for Dependent Data ........................ 487
    29.17.Consistent Bootstrap for Stationary 
          Autoregression ...................................... 488
    29.18.Block Bootstrap Methods ............................. 489
    29.19.Optimal Block Length ................................ 491
    29.20.Exercises ........................................... 492
    References ................................................ 495

30. Jackknife ................................................. 499
    30.1. Notation and Motivating Examples .................... 499
    30.2. Bias Correction by the Jackknife .................... 502
    30.3. Variance Estimation ................................. 503
    30.4. Delete-d Jackknife and von Mises Functionals ........ 504
    30.5. A Numerical Example ................................. 507
    30.6. Jackknife Histogram ................................. 508
    30.7. Exercises ........................................... 511
    References ................................................ 512

31. Permutation Tests ......................................... 513
    31.1. General Permutation Tests and Basic Group
          Theory .............................................. 514
    31.2. Exact Similarity of Permutation Tests ............... 516
    31.3. Power of Permutation Tests .......................... 519
    31.4. Exercises ........................................... 520
    References ................................................ 521

32  Density Estimation ........................................ 523
    32.1. Basic Terminology and Some Popular Methods .......... 523
    32.2. Measures of the Quality of Density Estimates ........ 526
    32.3. Certain Negative Results ............................ 526
    32.4. Minimaxity Criterion ................................ 529
    32.5. Performance of Some Popular Methods: A Preview ...... 530
    32.6. Rate of Convergence of Histograms ................... 531
    32.7. Consistency of Kernel Estimates ..................... 533
    32.8. Order of Optimal Bandwidth and Superkernels ......... 535
    32.9. The Epanechnikov Kernel ............................. 538
    32.10.Choice of Bandwidth by Cross Validation ............. 539
          32.10.1. Maximum Likelihood CV ...................... 540
          32.10.2. Least Squares CV ........................... 542
          32.10.3. Stone's Result ............................. 544
    32.11.Comparison of Bandwidth Selectors
          and Recommendations ................................. 545
    32.12.L1 Optimal Bandwidths ............................... 547
    32.13.Variable Bandwidths ................................. 548
    32.14.Strong Uniform Consistency and Confidence
          Bands ............................................... 550
    32.15.Multivariate Density Estimation and Curse
          of Dimensionality ................................... 552
          32.15.1.Kernel Estimates and Optimal Bandwidths ..... 556
    32.16.Estimating a Unimodal Density and the
          Grenander Estimate .................................. 558
          32.16.1.The Grenander Estimate ...................... 558
    32.17.Mode Estimation and Chernoff's Distribution ......... 561
    32.18.Exercises ........................................... 564
    References ................................................ 568

33  Mixture Models and Nonparametric Deconvolution ............ 571
    33.1. Mixtures as Dense Families .......................... 572
    33.2. Distributions and Other Gaussian Mixtures
          as Useful Models .................................... 573
    33.3. Estimation Methods and Their Properties:
          Finite Mixtures ..................................... 577
          33.3.1. Maximum Likelihood .......................... 577
          33.3.2. Minimum Distance Method ..................... 578
          33.3.3. Moment Estimates ............................ 579
    33.4. Estimation in General Mixtures ...................... 580
    33.5. Strong Consistency and Weak Convergence
          of the MLE .......................................... 582
    33.6. Convergence Rates for Finite Mixtures
          and Nonparametric Deconvolution ..................... 584
          33.6.1 Nonparametric Deconvolution .................. 585
    33.7. Exercises ........................................... 587
    References ................................................ 589

34. High-Dimensional Inference and False Discovery ............ 593
    34.1. Chi-square Tests with Many Cells and Sparse
          Multinomials ........................................ 594
    34.2. Regression Models with Many Parameters:
          The Portnoy Paradigm ................................ 597
    34.3. Multiple Testing and False Discovery:
          Early Developments .................................. 599
    34.4. False Discovery: Definitions, Control, and
          the Benjamini-Hochberg Rule ......................... 601
    34.5. Distribution Theory for False Discoveries
          and Poisson and First-Passage Asymptotics ........... 604
    34.6. Newer FDR Controlling Procedures .................... 606
          34.6.1. Storey-Taylor-Siegmund Rule ................. 606
    34.7. Higher Criticism and the Donoho-Jin
          Developments ........................................ 608
    34.8. False Nondiscovery and Decision Theory
          Formulation ......................................... 611
          34.8.1. Genovese-Wasserman Procedure ................ 612
    34.9. Asymptotic Expansions ............................... 614
    34.10.Lower Bounds on the Number of False Hypotheses ...... 616
          34.10.1.Biihlmann-Meinshausen-Rice Method ........... 617
    34.11.The Dependent Case and the Hall-Jin Results ......... 620
          34.11.1.Increasing and Multivariate Totally
                  Positive Distributions ...................... 620
          34.11.2.Higher Criticism under Dependence:
                  Hall-Jin Results ............................ 623
    34.12.Exercises ........................................... 625
    References ................................................ 628

35. A Collection of Inequalities in Probability, Linear Algebra,
    and Analysis .............................................. 633
    35.1. Probability Inequalities ............................ 633
          35.1.1. Improved Bonferroni Inequalities ............ 633
          35.1.2. Concentration Inequalities .................. 634
          35.1.3. Tail Inequalities for Specific
                  Distributions ............................... 639
          35.1.4. Inequalities under Unimodality .............. 641
          35.1.5. Moment and Monotonicity Inequalities ........ 643
          35.1.6. Inequalities in Order Statistics ............ 652
          35.1.7. Inequalities for Normal Distributions ....... 655
          35.1.8. Inequalities for Binomial and Poisson
                  Distributions ............................... 656
          35.1.9. Inequalities in the Central Limit
                  Theorem ..................................... 658
          35.1.10.Martingale Inequalities ..................... 661
    35.2  Matrix Inequalities ................................. 663
          35.2.1. Rank, Determinant, and Trace
                  Inequalities ................................ 663
          35.2.2. Eigenvalue and Quadratic Form
                  Inequalities ................................ 667
    35.3. Series and Polynomial Inequalities .................. 671
    35.4. Integral and Derivative Inequalities ................ 675

Glossary of Symbols ........................................... 689

Index ......................................................... 693


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:19:32 2019. Размер: 32,072 bytes.
Посещение N 1895 c 10.02.2009