Vanderbei R.J. Linear programming: foundations and extensions (New York, 2008). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаVanderbei R.J. Linear programming: foundations and extensions. - 3rd ed. - New York: Springer, 2008. - xix, 464 p. - (International series in operations research and management science; 37). - ISBN 978-0-387-74387-5
 

Оглавление / Contents
 
Preface ..................................................... xiii
Preface to 2nd Edition ...................................... xvii
Preface to 3rd Edition ....................................... xix

Part 1. Basic Theory—The Simplex Method and Duality ............ 1

Chapter 1. Introduction ........................................ 3

 1. Managing a Production Facility ............................. 3
 2. The Linear Programming Problem ............................. 6
    Exercises .................................................. 8
    Notes ..................................................... 10

Chapter 2. The Simplex Method ................................. 13

 1. An Example ................................................ 13
 2. The Simplex Method ........................................ 16
 3. Initialization ............................................ 19
 4. Unboundedness ............................................. 22
 5. Geometry .................................................. 22
 Exercises .................................................... 24
 Notes ........................................................ 27

Chapter 3. Degeneracy ......................................... 29

 1. Definition of Degeneracy .................................. 29
 2. Two Examples of Degenerate Problems ....................... 29
 3. The Perturbation/Lexicographic Method ..................... 32
 4. Bland's Rule .............................................. 36
 5. Fundamental Theorem of Linear Programming ................. 38
 6. Geometry .................................................. 39
    Exercises ................................................. 42
    Notes ..................................................... 43

Chapter 4. Efficiency of the Simplex Method ................... 45

 1. Performance Measures ...................................... 45
 2. Measuring the Size of a Problem ........................... 45
 3. Measuring the Effort to Solve a Problem ................... 46
 4. Worst-Case Analysis of the Simplex Method Exercises ....... 47
Exercises ..................................................... 52
 Notes ........................................................ 53

Chapter 5. Duality Theory

 1. Motivation—Finding Upper Bounds ...........................	55
 2  The Dual Problem ..........................................	55
 3. The Weak Duality Theorem ..................................	57
 4. The Strong Duality Theorem ................................	58
 5. Complementary Slackness ...................................	60
 6. The Dual Simplex Method ...................................	66
 7. Dual-Based Phase I Algorithm ..............................	68
 8. The Dual of a Problem in General For ......................	71
 9. Resource Allocation Problems ..............................	73
 10.Lagrangian Duality ........................................	74
 Exercises .................................................... 78
 Exercises .................................................... 79
 Notes ........................................................	87

Chapter 6. The Simplex Method in Matrix Notation

 1. Matrix Notation ........................................... 89
 2. The Primal Simplex Method ................................. 89
 3. An Example ................................................ 91
 4. The Dual Simplex Method ................................... 96
 5. Two-Phase Methods ........................................ 101
 6. Negative Transpose Property .............................. 104
 Exercises ................................................... 108
 Notes ....................................................... 109

Chapter 7. Sensitivity and Parametric Analyses ............... 111

 1. Sensitivity Analysis ..................................... 111
 2. Parametric Analysis and the Homotopy Method .............. 115
 3. The Parametric Self-Dual Simplex Method Exercises ........ 119
 Notes ....................................................... 120
 
Chapter 8. Implementation Issues ............................. 124

 1. Solving Systems of Equations: LI-Factorization ........... 125
 2. Exploiting Sparsity ...................................... 126
 3. Reusing a Factorization .................................. 130
 4. Performance Tradeoffs .................................... 136
 5. Updating a Factorization ................................. 141
 6. Shrinking the Bump ....................................... 145
 7. Partial Pricing .......................................... 146
 S. Steepest Edge ............................................ 147
 Exercises ................................................... 149
 Notes ....................................................... 150

Chapter 9. Problems in General Form .......................... 151

 1. The Primal Simplex Method ................................ 151
 2. The Dual Simplex Method .................................. 153
 Exercises ................................................... 159
 Notes ....................................................... 160

Chapter 10. Convex Analysis .................................. 161

 1. Com ex Sets .............................................. 161
 2. Caratheodory's Theorem ................................... 163
 3. The Separation Theorem ................................... 165
 4. Farkas' Lemma ............................................ 167
 5. Strict Complementarity ................................... 168
 Exercises ................................................... 170
 Notes ....................................................... 171

Chapter 11. Game Theory ...................................... 173

 1. Matrix Games ............................................. 173
 2. Optimal Strategies ....................................... 175
 3. The Minimax Theorem ...................................... 177
 4. Poker .................................................... 181
 Exercises ................................................... 184
 Notes ....................................................... 187

Chapter 12. Regression ....................................... 189

 1. Measures of Mediocrity ................................... 189
 2. Multidimensional Measures: Regression Analysis ........... 191
 3. L-'-Regression ........................................... 193
 4. I'-Regression ............................................ 195
 5. Iteratively Reweighted Least Squares ..................... 196
 6. An Example: How Fast is the Simplex Method? .............. 198
 7. Whieh Variant of the Simplex Method is Best? ............. 202
 Exercises ................................................... 203
 Notes ....................................................... 208

Chapter 13. Financial Applications ........................... 211

 1. Portfolio Selection ...................................... 211
 2. Option Pricing ........................................... 216
 Exercises ................................................... 221
 Notes ....................................................... 222

Part 2.   Network-Type Problems .............................. 223

Chapter 14. Network Flow Problems ............................ 225

 1. Networks ................................................. 225
 2. Spanning Trees and Bases ................................. 228
 3. The Primal Network Simplex Method ........................ 233
 4. The Dual Network Simplex Method .......................... 237
 5. Putting It All Together .................................. 240
 6. The Integrality Theorem .................................. 243
 Exercises ................................................... 244
 Notes ....................................................... 252

Chapter 15. Applications ..................................... 253

 1. The Transportation Problem ............................... 253
 2. The Assignment Problem ................................... 255
 3. The Shortest-Path Problem ................................ 256
 4. Upper-Bounded Network Flow: Problems ..................... 259
 5. The Maximum-Flow Problem ................................. 262
 Exercises ................................................... 264
 Notes ....................................................... 269

Chapter 16. Structural Optimization .......................... 271

 1. An Example ............................................... 271
 2. Incidence Matrices ....................................... 273
 3. Stability ................................................ 274
 4. Conservation Laws ........................................ 276
 5. Minimum-Weight Structural Design ......................... 279
 6. Anchors Away ............................................. 281
 Exercises ................................................... 284
 Notes ....................................................... 284

Part 3.   Interior-Point Methods ............................. 287

Chapter 17. The Central Path ................................. 289

 Warning: Nonstandard Notation Ahead ......................... 289
 1. The Barrier Problem ...................................... 289
 2. Lagrange Multipliers ..................................... 292
 3. Lagrange Multipliers Applied to the Barrier Problem ...... 295
 4. Second-Order Information ................................. 297
 5. Existence ................................................ 297
 Exercises ................................................... 299
 Notes ....................................................... 301

Chapter 18. A Path-Following Method .......................... 303

 1. Computing Step Directions ................................ 303
 2. Newton's Method .......................................... 305
 3. Estimating an Appropriate Value for the Barrier
    Parameter ................................................ 306
 4. Choosing the Step Length Parameter ....................... 307
 5. Convergence Analysis ..................................... 308
 Exercises ................................................... 314
 Notes ....................................................... 318

Chapter 19. The KKT System ................................... 319

 1. The Reduced KKT System ................................... 319
 2. The Normal Equations ..................................... 320
 3. Step Direction Decomposition ............................. 322
 Exercises ................................................... 325
 Notes ....................................................... 325

Chapter 20. Implementation Issues ............................ 327

 1. Factoring Positive Definite Matrices ..................... 327
 2. Quasidefinite Matrices ................................... 331
 3. Problems in General Form ................................. 337
 Exercises ................................................... 342
 Notes ....................................................... 342

Chapter 21. The Aftine-Scaling Method ........................ 345

 1. The Steepest Ascent Direction ............................ 345
 2. The Projected Gradient Direction ......................... 347
 3. The Projected Gradient Direction with Scaling ............ 349
 4. Convergence .............................................. 353
 5. Feasibility Direction .................................... 355
 6. Problems in Standard Form ................................ 356
 Exercises ................................................... 357
 Notes ....................................................... 358

Chapter 22. The Homogeneous Self-Dual Method ................. 361

 1. From Standard Form to Self-Dual Form ..................... 361
 2. Homogeneous Self-Dual Problems ........................... 362
 3. Back to Standard Form .................................... 372
 4. Simplex Method vs Interior-Point Methods ................. 375
 Exercises ................................................... 379
 Notes ....................................................... 380

Part 4. Extensions ........................................... 383

Chapter 23. Integer Programming .............................. 385

 1. Scheduling Problems ...................................... 385
 2. The Traveling Salesman Problem ........................... 387
 3. Fixed Costs .............................................. 390
 4. Nonlinear Objective Functions ............................ 390
 5. Branch-and-Bound ......................................... 392
 Exercises ................................................... 404
 Notes ....................................................... 405

Chapter 24. Quadratic Programming ............................ 407

    The Markowitz Model ...................................... 407
    The Dual ................................................. 412
    Convexity and Complexity ................................. 414
 4. Solution Via Interior-Point Methods ...................... 418
 Practical Considerations .................................... 419
 Exercises ................................................... 422
 Notes ....................................................... 423

Chapter 25. Convex Programming ............................... 425

    Differentiable Functions and Taylor Approximations ....... 425
    Convex and Concave Functions ............................. 426
    Problem Formulation ...................................... 426
 4. Solution Via Interior-Point Methods ...................... 427
 Successive Quadratic Approximations ......................... 429
 6. Merit Functions .......................................... 429
 7. Parting Words ............................................ 433
 Exercises ................................................... 433
 Notes ....................................................... 435

 Appendix A. Source Listings ................................. 437

 1. The Self-Dual Simplex Method ............................. 438
 2. The Homogeneous Self-Dual Method ......................... 441

 Answers to Selected Exercises ............................... 445

 Bibliography ................................................ 449

 Index ....................................................... 457


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:19:30 2019. Размер: 18,218 bytes.
Посещение N 1415 c 03.02.2009