Ludu A. Nonlinear waves and solitons on contours and closed surfaces (Berlin; Heidelberg, 2007). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаLudu A. Nonlinear waves and solitons on contours and closed surfaces. - Berlin; Heidelberg: Springer, 2007. - xi, 466 p. - (Springer Series in Synergetics). - ISBN 978-3-540-72872-6; ISSN 0172-7389
 

Место хранения: 015 | Библиотека Института гидродинамики CO РАН | Новосибирск

Оглавление / Contents
 
Part I Mathematical Prerequisites

Introduction .................................................... 5

   1.1  Introduction to Soliton Theory .......................... 5
   1.2  Algebraic and Geometric Approaches ...................... 6
   1.3  A List of Useful Derivatives ............................ 8

2  Mathematical Prerequisites .................................. 11

   2.1  Elements of Topology ................................... 11
        2.1.1  Separation Axioms ............................... 12
        2.1.2  Compactness ..................................... 15
        2.1.3  Weierstrass Stone Theorem ....................... 17
        2.1.4  Connectedness, Connectivity, and Homotopy ....... 18
        2.1.5  Separability and Basis .......................... 20
        2.1.6  Metric and Normed Spaces ........................ 20
   2.2  Elements of Homology ................................... 21

3  The Importance of the Boundary .............................. 23

   3.1  The Power of Compact Boundaries:
        Representation Formulas ................................ 23
        3.1.1  Representation Formula for n = 1:
               Taylor Series ................................... 24
        3.1.2  Representation Formula for n = 2:
               Cauchy Formula .................................. 24
        3.1.3  Representation Formula for n = 3:
               Green Formula ................................... 25
        3.1.4  Representation Formula in General:
               Stokes Theorem .................................. 26
   3.2  Comments and Examples .................................. 28

4  Vector Fields, Differential Forms,
   and Derivatives ............................................. 31

   4.1  Manifolds and Maps ..................................... 32
   4.2  Differential and Vector Fields ......................... 35
   4.3  Existence and Uniqueness Theorems:
        Differential Equation Approach ......................... 39
   4.4  Existence and Uniqueness Theorems: Flow
        Box Approach ........................................... 45
   4.5  Compact Supported Vector Fields ........................ 47
   4.6  Lie Derivative and Differential Forms .................. 47
   4.7  Invariants ............................................. 52
   1.8  Fiber Bundles  ......................................... 54
   4.9  Poincare Lemma ......................................... 57
   4.10 Tensor Analysis. Covariant Derivative,
        and Connections ........................................ 58
   4.11 The Mixed Covariant Derivative ......................... 60
   4.12 Curvilinear Orthogonal Coordinates ..................... 62
        4.12.1 Gradient ........................................ 64
        4.12.2 Divergence ...................................... 64
        4.12.3 Curl ............................................ 65
        4.12.4 Laplacian ....................................... 65
        4.12.5 Special Two-Dimensional Nonlinear
               Orthogonal Coordinates .......................... 66
   4.13 Problems ............................................... 67

5  Geometry of Curves .......................................... 69

   5.1  Elements of Differential Geometry of
        Curves ................................................. 69
   5.2  Closed Curves .......................................... 76
   5.3  Curves Lying on a Surface .............................. 78
   5.4  Problems ............................................... 79

6  Motion of Curves and Solitons ............................... 81

   6.1  Nonlinear Kinematics of Two-Dimensional
        Curves and Solitons .................................... 82
        6.1.1 The Time Evolution of Length and
              Area in General .................................. 94
   6.2  Kinematics of Curve Motion: Three Dimension ........... 101
   6.3  Problems .............................................. 102
 
7  Geometry of Surfaces ....................................... 103

   7.1  Elements of Differential Geometry of Surfaces ......... 105
   7.2  Covariant Derivative and Connections .................. 112
   7.3  Geometry of Parametrized Surfaces Embedded
        in R3 ................................................. 116
        7.3.1  Christ off el Symbols and Covariant
               Differentiation for Hybrid Tensors ............. 118
   7.4  Compact Surfaces ...................................... 120
   7.5  Surface Differential Operators ........................ 122
        7.5.1  Surface Gradient ............................... 123
        7.5.2  Surface Divergence ............................. 125
        7.5.3  Surface Laplacian .............................. 126
        7.5.4  Surface Curl ................................... 127
        7.5.5  Integral Relations for Surface
               Differential Operators ......................... 129
        7.5.6  Applications ................................... 131
   7.6 Problems ............................................... 134

8  Theory of Motion of Surfaces ............................... 137

   8.1  Coordinates and Velocities on a
        Fluid Surface ......................................... 137
   8.2  Geometry of Moving Surfaces ........................... 143
   8.3  Dynamics of Moving Surfaces ........................... 145
   8.4  Boundary Conditions for Moving Fluid
        Interfaces ............................................ 148
   8.5  Dynamics of the Fluid Interfaces ...................... 149
   8.6  Problems .............................................. 151

Part II Solitons and Nonlinear Waves on Closed
        Curves and Surfaces

9  Kinematics of Hydrodynamics ................................ 157

   9.1  Lagrangian vs. Eulerian Frames ........................ 157
        9.1.1  Introduction ................................... 158
        9.1.2  Geometrical Picture for Lagrangian
               vs. Eulerian ................................... 159
   9.2  Fluid Fiber Bundle .................................... 161
        9.2.1  Introduction ................................... 161
        9.2.2  Motivation for a Geometrical Approach .......... 164
        9.2.3  The Fiber Bundle ............................... 167
        9.2.4  Fixed Fluid Container .......................... 168
        9.2.5  Free Surface Fiber Bundle ...................... 172
        9.2.6  How Does the Time Derivative of Tensors
               Transform from Euler to Lagrange Frame? ........ 174
   9.3  Path Lines. Stream Lines, and Particle
        Contours .............................................. 178
   9.4  Eulerian Lagrangian Description for
        Moving Curves ......................................... 184
   9.5  The Free Surface ...................................... 184
   9.6  Equation of Continuity ................................ 186
        9.6.1  Introduction ................................... 186
        9.6.2  Solutions of the Continuity Equation
               on Compact Intervals ........................... 192
   9.7  Problems .............................................. 198

10  Dynamics of Hydrodynamics ................................. 201

   10.1 Momentum Conservation: Euler and Navier Stokes
        Equations ............................................. 201
   10.2 Boundary Conditions ................................... 204
   10.3 Circulation Theorem ................................... 206
   10.4 Surface Tension ....................................... 212
        10.4.1 Physical Problem ............................... 212
        10.4.2 Minimal Surfaces ............................... 214
        10.4.3 Application .................................... 216
        10.4.4 Isothermal Parametrization ..................... 219
        10.4.5 Topological Properties of
               Minimal Surfaces ............................... 222
        10.4.6 General Condition for Minimal
               Surfaces ....................................... 224
        10.4.7 Surface Tension for Almost
               Isothermal Parametrization ..................... 225
   10.5 Special Fluids ........................................ 228
   10.6 Representation Theorems in Fluid Dynamics ............. 228
        10.6.1 Helmholtz Decomposition Theorem
               in R3 .......................................... 228
        10.6.2 Decomposition Formula for Transversal
               Isotropic Vector Fields ........................ 231
        10.6.3 Solenoidal-Toroidal Decomposition
               Formulas ....................................... 234
   10.7 Problems .............................................. 234

11  Nonlinear Surface Waves in One Dimension .................. 237

   11.1 KdV Equation Deduction for Shallow Waters ............. 237
   11.2 Smooth Transitions Between Periodic and
        Aperiodic Solutions ................................... 242
   11.3 Modified KdV Equation and Generalizations ............. 246
   11.4 Hydrodynamic Equations Involving Higher-Order
        Nonlinearities ........................................ 249
        11.4.1  A Compact Version for KdV ..................... 249
        11.4.2 Small Amplitude Approximation .................. 252
        11.4.3 Dispersion Relations ........................... 254
        11.4.4 The Full Equation .............................. 255
        11.4.5 Reduction of GKdV to Other Equations
               and Solutions .................................. 257
        11.4.6 The Finite Difference Form ..................... 261
   11.5 Boussinesq Equations on a Circle ...................... 264

12 Nonlinear Surface Waves in Two Dimensions .................. 267

   12.1 Geometry of l"wo-Dimensional Flow ..................... 267
   12.2 Two-Dimensional Nonlinear Equations ................... 275
   12.3 Two-Dimensional Fluid Systems with Boundary ........... 278
   12.4 Oscillations in Two-Dimensional Liquid Drops .......... 281
   12.5 Contours Described by Quartic Closed Curves ........... 283
   12.6 Surface Nonlinear Waves in Two-Dimensional
        Liquid Nitrogen Drops ................................. 284

13 Nonlinear Surface Waves in Three Dimensions ................ 289

   13.1 Oscillations of Inviscid Drops: The Linear
        Model ................................................. 291
        13.1.1 Drop Immersed in Another Fluid ................. 293
        13.1.2 Drop with Rigid Core ........................... 295
        13.1.3 Moving Core .................................... 301
        13.1.4 Drop Volume .................................... 305
   13.2 Oscillations of Viscous Drops: The Linear
        Model ................................................. 307
        13.2.1 Model 1 ........................................ 308
   13.3 Nonlinear Three-Dimensional Oscillations
        of Axisymmetric Drops ................................. 322
        13.3.1 Nonlinear Resonances in Drop Oscillation ....... 330
   13.4 Other Nonlinear Effects in Drop Oscillations .......... 340
   13.5 Solitons on the Surface of Liquid Drops ............... 344
   13.6 Problems .............................................. 353

14 Other Special Nonlinear Compact Systems .................... 355

   14.1 Nonlinear Compact Shapes and Collective Motion ........ 355
   14.2 The Hamiltonian Structure for Free Boundary
        Problems on Compact Surfaces .......................... 359

Part III Physical Nonlinear Systems at Different Scales

15 Filaments, Chains, and Solitons ............................ 367

   15.1 Vortex Filaments ...................................... 367
        15.1.1 Gas Dynamics Filament Model and Solitons ....... 372
        15.1.2 Special Solutions .............................. 375
        15.1.3 Integration of Serret-Frenet Equations for
               Filaments ...................................... 377
        15.1.4 The Riccati Form of the 
               Serret-Frenet Equations ........................ 380
        15.1.5 Soliton Solutions on the 
               Vortex Filament ................................ 381
        15.1.6 Vortex Filaments and the Nonlinear
               Schrodinger Equation ........................... 384
   
   15.2 Nonlinear Dynamics of Stiff Chains .................... 387
   15.3 Problems .............................................. 390

16 Solitons on the Boundaries of Microscopic Systems .......... 391

   16.1 Field Theory Model on a Closed Contour
        and Instantons ........................................ 392
        16.1.1 Quantization: Excited States ................... 394
        16.1.2 Quantization: Instantons and
               Tunneling ...................................... 394
   16.2 Clusters as Solitary Waves on the Nuclear
        Surface ............................................... 396
   16.3 Solitons and Quasimolecular Structure ................. 404
   16.4 Soliton Model for Heavy Emitted Nuclear
        Clusters .............................................. 406
        16.4.1 Quintic Nonlinear Schrodinger Equation
               for Nuclear Cluster Decay ...................... 408
   16.5 Contour Solitons in the Quantum Hall Liquid ........... 411
        16.5.1 Perturbative Approach .......................... 414
        16.5.2 Geometric Approach ............................. 417

17 Nonlinear Contour Dynamics in Macroscopic
   Systems .................................................... 423

   17.1 Plasma Vortex ......................................... 423
        17.1.1 Effective Surface Tension in
               Magnetohydrodynamics and Plasma
               Systems ........................................ 423
        17.1.2 Trajectories in Magnetic Field
               Configurations ................................. 424
        17.1.3 Magnetic Surfaces in Static
               Equilibrium .................................... 433
   17.2 Elastic Spheres ....................................... 440
        17.2.1 Nonlinear Evolution of Oscillation
               Modes in Neutron Stars ......................... 441
   
18 Mathematical Annex ......................................... 445

   18.1 Differentiable Manifolds .............................. 445
   18.2 Riccati Equation ...................................... 446
   18.3 Special Functions ..................................... 446
   18.4 One-Soliton Solutions for the KdV, MKdV,
        and Their Combination ................................. 448
   18.5 Scaling and Nonlinear Dispersion
        Relations ............................................. 450

References .................................................... 453

Index ......................................................... 461


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:19:28 2019. Размер: 18,863 bytes.
Посещение N 1770 c 03.02.2009