Deans S.R. The radon transform and some of its applications (N.Y., 2007). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаDeans S.R. The radon transform and some of its applications. - N.Y.: Dover Publ., 2007. - xi, 295 p.: ill. - ISBN-10 0-486-46241-2; ISBN-13 978-0-486-46241-7
 

Оглавление / Contents
 
Chapter 1. Major Fields of Application .......................... 1

1.1.  Introduction .............................................. 1
1.2.  Medicine; X-ray Computed Tomography ...................... 11
1.3.  Medicine; Emission Computed Tomography ................... 16
1.4.  Medicine; Ultrasound CT .................................. 21
1.5.  Astronomy ................................................ 24
1.6.  Electron Microscopy ...................................... 31
1.7.  Nuclear Magnetic Resonance ............................... 35
1.8.  Optics ................................................... 42
1.9.  Stress Analysis, Geophysics, and Other Areas ............. 48
1.10. References ............................................... 50

Chapter 2. Definition of the Radon Transform ................... 55

2.1.  Introduction ............................................. 55
2.2.  Two Dimensions ........................................... 56
2.3.  Three Dimensions ......................................... 59
2.4.  Extension to Higher Dimensions ........................... 60
2.5.  Some Important Examples .................................. 61

Chapter 3. Basic Properties .................................... 66

3.1.  Introduction ............................................. 66
3.2.  Homogeneity .............................................. 66
3.3.  Linearity ................................................ 67
3.4.  Transform of a Linear Transformation ..................... 68
3.5.  Shifting Property ........................................ 71
3.6.  Transform of Derivatives ................................. 77
3.7.  Transforms Involving Hermite Polynomials ................. 80
3.8.  Transforms Involving Laguerre Polynomials ................ 86
3.9.  Derivatives of the Transform ............................. 91
3.10. Transform of Convolution ................................. 94


Chapter 4. Relation to Other Transforms ........................ 96

4.1.  Introduction ............................................. 96
4.2.  Relation to the Fourier Transform ........................ 96
4.3.  Relation to the Gegenbauer Transform .................... 100
4.4.  Relation to the Hough Transform ......................... 106
4.5.  Relation to the Hankel Transform ........................ 107

Chapter 5. Inversion .......................................... 108

5.1.  Introduction ............................................ 108
5.2.  Odd Dimension ........................................... 108
5.3.  Even Dimension .......................................... 112
5.4.  Unification and the Adjoint ............................. 115
5.5.  Fourier Methods ......................................... 121

Chapter 6. Recent Development of Inversion Methods ............ 125

6.1.  Introduction ............................................ 125
6.2.  Projection-Slice Theorem ................................ 128
6.3.  Backprojection .......................................... 131
6.4.  Backprojection of Filtered Projections .................. 136
6.5.  Filter of Backprojections ............................... 140
6.6.  Iterative Methods ....................................... 142
6.7.  Three-dimensional Methods ............................... 147
6.8.  Categorized References .................................. 147

Chapter 7. Series Methods ..................................... 151

7.1.  Introduction ............................................ 151
7.2.  Gegenbauer Transform Pair ............................... 151
7.3.  Circular Harmonic Expansion (n = 2) ..................... 152
7.4.  Spherical Harmonic Expansion (n = 3) .................... 160
7.5.  A Tchebycheff Transform Pair of the Second
      Kind .................................................... 163
7.6.  Orthogonal Function Expansions on the Unit
      Disk .................................................... 163
7.7.  Orthogonal Function Expansions Over the Entire
      Plane ................................................... 180
7.8.  Other Approaches ........................................ 182

Chapter 8. More Properties, Applications, and
           Generalizations .................................... 184

8.1.  Introduction ............................................ 184
8.2.  Characterization of the Transform ....................... 184
8.3.  A Discrete Version ...................................... 187
8.4.  Picture Restoration ..................................... 191
8.5.  Transformations in Geophysics ........................... 192
8.6.  The Integral Equation of Potential Scattering ........... 196
8.7.  Partial Differential Equations .......................... 198
8.8.  Generalizations and Other Uses .......................... 201

Appendix A. Translation of Radon's 1917 Paper ................. 204

Appendix B. Generalized Functions ............................. 218

Appendix C. Special Functions ................................. 240

References .................................................... 247

Additional and Recent References .............................. 282

Index ......................................................... 289


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:19:28 2019. Размер: 8,878 bytes.
Посещение N 1624 c 03.02.2009