Hayashi N. Nonlinear theory of pseudodifferential equations on a half-line (Amsterdam; London, 2004). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаHayashi N. Nonlinear theory of pseudodifferential equations on a half-line / Hayashi N., Kaikina E. - Amsterdam; London: Elsevier, 2004. - xix, 319 p. - (North-Holland mathematics studies; 194). - ISSN 0304-0208; ISBN 0-444-51569-0
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
Preface ........................................................ ix

Chapter 1.  Introduction ....................................... xi

Chapter 2.  Preliminaries ....................................... 1

        1.  Laplace transform ................................... 1
        2.  Sobolev spaces Hk(R+) ............................... 6

Chapter 3.  General Theory ...................................... 9

        1.  Pseudodifferential Operator on a Half-Line .......... 9
        2.  Boundary Value Problem on a Half-Line .............. 12

Chapter 4.  Nonlinear Schrodinger Type Equations ............... 29

        1.  Setting of the problem ............................. 29
        2.  Linear problem ..................................... 34
        3.  Local existence for nonlinear problem .............. 45
        4.  Asymptotics determined by the boundary data ........ 47
        5.  Asymptotics determined by nonlinearity ............. 57

Chapter 5.  Whitham Equation ................................... 71

        1.  Introduction ....................................... 71
        2.  Linear problem ..................................... 73
        3.  Preliminaries ...................................... 75
        4.  Local existence .................................... 81
        5.  Large time asymptotics ............................. 85

Chapter 6.  Korteweg-de Vries-Burgers Equation ................. 93

        1.  Introduction ....................................... 93
        2.  Linear problem ..................................... 95
        3.  Preliminaries ...................................... 99
        4.  Local existence for linear case ................... 111
        5.  Local existence for nonlinear problem ............. 114
        6.  Large time asymptotics ............................ 116

Chapter 7.  Large Initial Data ................................ 121

        1   Introduction ...................................... 121
        2.  Linear problem .................................... 122
        3.  Local existence ................................... 126
        4.  Preliminary estimates ............................. 128
        5.  Global existence .................................. 132

Chapter 8.  KdV-B Type Equation ............................... 139

        1.  Setting of the problem ............................ 139
        2.  Linear problem .................................... 140
        3.  Energy estimate ................................... 143
        4.  Local existence ................................... 144
        5.  Large time asymptotics ............................ 145

Chapter 9.  Dirichlet Problem for KdV Equation ................ 149

        1.  Introduction ...................................... 149
        2.  Linear problem .................................... 153
        3.  Preliminaries ..................................... 153
        4.  Global existence .................................. 161

Chapter 10. Neumann Problem for KdV Equation .................. 171

        1.  Introduction ...................................... 171
        2.  Linear problem .................................... 174
        3.  Preliminaries ..................................... 179
        4.  Local existence ................................... 194
        5.  Proof of Theorem 31 ............................... 197

Chapter 11. Landau-Ginzburg Equations ......................... 205

        1.  Introduction ...................................... 205
        2.  Preliminaries ..................................... 208
        3.  Proof of Theorem 34 ............................... 214

Chapter 12. Burgers Equation with Pumping ..................... 221

        1.  Introduction ...................................... 221
        2.  Rarefaction wave .................................. 224
        3.  Shock wave ........................................ 230
        4.  Zero boundary conditions .......................... 233

Chapter 13. KdVB Equation on a Segment ........................ 245

        1.  Introduction ...................................... 245
        2.  Linear problem .................................... 246
        3.  Local existence for the nonlinear problem ......... 255
        4.  Large time asymptotics ............................ 267
        5.  Large initial data ................................ 259

Chapter 14. NLS Equation on Segment ........................... 261

        1.  Introduction ...................................... 261
        2.  Linear problem .................................... 265
        3  Global existence ................................... 271

Chapter 15. Periodic Problem .................................. 275

        1.  Introduction ...................................... 275
        2.  Preliminary estimates ............................. 285
        3.  Proof of theorems ................................. 292

Bibliography .................................................. 309

Index ......................................................... 317


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:19:26 2019. Размер: 8,999 bytes.
Посещение N 1577 c 27.01.2009