Preface ......................................................... v
About the Editors ............................................ xvii
List of Contributors .......................................... xix
Contents of Volumes in This Set ............................... xxi
CHAPTER 1. Charge Storage in Metal Nanocrystals
Chungho Lee, Edwin C. Kan
1. Introduction ................................................ 2
1.1. Review of Memory Technologies ......................... 2
1.2. Nonvolatile Memories Based on Floating Gate ........... 2
1.3. Overview .............................................. 3
2. Metal Nanocrystal Self Assembly ............................. 4
2.1. Introduction .......................................... 4
2.2. Fabrication and Characterization of the Tunneling
Oxide ................................................. 5
2.3. Metal Nanocrystal Formation ........................... 7
2.4. Physical Characterization of Nanocrystals ............ 18
2.5. Si Nanocrystal Formation ............................. 27
3. Metal Nanocrystal Memories ................................. 28
3.1. Introduction ......................................... 28
3.2. Device Fabrication ................................... 31
3.3. Work Function Engineering ............................ 36
3.4. Metal Contamination .................................. 44
4. Electrical Characterization of Metal Nanocrystal
Memories ................................................... 46
4.1. Introduction ......................................... 46
4.2. Electrical Characterization .......................... 47
4.3. Reliability and Performance .......................... 56
5. Double Layer Metal Nanocrystal Memories .................... 62
5.1. Introduction ......................................... 62
5.2. Device Fabrication ................................... 64
5.3. Electrical Characterization .......................... 64
5.4. Multi-Bit-Per-Cell Operations ........................ 72
6. Conclusion ................................................. 73
6.1. Conclusion ........................................... 73
6.2. Future Work .......................................... 73
References ................................................. 74
CHAPTER 2. Nanoscale Magnetic Devices
Sakhrat Khizroev, Roman Chomko, Dmitri Litvinov
1. Introduction ............................................... 77
2. Write Transducers .......................................... 78
2.1. Perpendicular Versus Longitudinal Recording .......... 78
2.2. Different Modes of Perpendicular Recording ........... 79
2.3. Heat-Assisted Magnetic Recording (HAMR) ............. 103
3. Playback Transducers ...................................... 104
3.1. Introduction ........................................ 104
3.2. Analysis ............................................ 105
References ................................................ 128
CHAPTER 3. Nanocrystalline Silicon Memory Devices
Shaoyun Huang, Hiroshi Mizuta, Shunri Oda
1. Introduction .............................................. 132
1.1. Challenges in Silicon Memory Technology ............. 132
1.2. Emerging nc-Si Memory Devices ....................... 133
1.3. Silicon Nanoelectronics ............................. 135
1.4. Neosilicon for Future Functional Devices ............ 136
1.5. Outline Contents .................................... 137
2. Structure of nc-Si Memory Devices ......................... 138
2.1. General nc-Si Memory Structures ..................... 138
2.2. Floating Gate and Channel Engineering ............... 139
2.3. Proposed Structures ................................. 142
2.4. Summary ............................................. 144
3. Fabrication Methodologies ................................. 145
3.1. Introduction to Nanofabrications .................... 145
3.2. Nanocrystalline Silicon Dots ........................ 146
3.3. Memory Cell Fabrications ............................ 150
3.4. Summary ............................................. 153
4. Single-Electron Memory .................................... 153
4.1. The Ultimate Aim: One Single Electron ............... 153
4.2. Single-Electron Electronics ......................... 155
4.3. Room Temperature Single-Electron nc-Si Memory ....... 159
4.4. Summary ............................................. 160
5. Memory Characteristics .................................... 160
5.1. Memory Operations ................................... 160
5.2. Interfacial States and Electron Charge, Storage,
and Discharge ....................................... 165
5.3. Retention Characteristics ........................... 168
5.4. Operation Speed and Cycling Endurance ............... 181
5.5. Summary ............................................. 183
6. Comparisons of Present Memory Devices ..................... 183
6.1. nc-Si Memory Devices and Other Types of Memory
Devices ............................................. 184
6.2. nc-Si Memory Devices and Other Semiconductor
Quantum Dot Memory Devices .......................... 186
6.3. Summary ............................................. 188
7. Concluding Remarks ........................................ 188
References ................................................ 190
CHAPTER 4. Few-Electron Memory: Fabrication, Operations,
and Challenges
Souri Banerjee, Shinji Nozaki
1. Introduction .............................................. 195
2. Single-Electron Phenomena ................................. 196
2.1. Coulomb Blockade .................................... 197
2.2. Coulomb Staircase ................................... 197
2.3. Minimum Tunnel Resistance for Single-Electron
Charging ............................................ 198
3. Few-Electron Memories ..................................... 199
3.1. Operation Principle ................................. 199
3.2. Fabricated Memories ................................. 204
3.3. Fabrication Process ................................. 216
4. Charge Retention .......................................... 220
4.1. Physics of Charge Retention ......................... 220
4.2. Methods to Improve Charge Retention ................. 222
5. Summary ................................................... 226
References ................................................ 227
CHAPTER 5. Quantum Effects and Nanofabrication in Scaling
Metal-Oxide-Semiconductor Devices
Y. Fu, M. Willander, Q.-X. Xu
1. Introduction .............................................. 229
2. Quantum Ballistic Transport: I. Perturbation Approach ..... 232
3. Quantum Ballistic Transport: II. Non-Perturbation
Approach .................................................. 235
4. Nanometer MOSFET Architectures and Carrier Transport
Along Quantum Wire ........................................ 238
5. Coulomb Blockade, Many-Body Effect, and Single-Electron
Transistor ................................................ 242
6. CMOS Fabrication and Processing Technology ................ 246
6.1. Nanoscale Lithography ............................... 246
6.2. Super-Steep Retrograde and Lateral Local Channel
Doping .............................................. 248
6.3. Ultrashallow Source and Drain Extensions with
High Surface Concentration .......................... 248
6.4. Ultrathin Nitrided Gate Oxide ....................... 248
6.5. Etch with High Selectivity and Anisotropy ........... 251
7. Tolerate the Leakage Current on Off-State ................. 252
References ................................................ 253
CHAPTER 6. Analysis of Fluctuations in Nanoscale Semiconductor
Devices
Isaak D. Mayergoyz, Petru Andrei
1. Introduction .............................................. 258
2. Calculation of Threshold Voltage Fluctuations ............. 259
2.1. Linearization Technique for the Analysis of
Fluctuations in Semiconductor Devices ............... 259
2.2. Analysis of Fluctuations of the Threshold Voltage
by Using the "Current" Definition ................... 264
2.3. Analysis of Fluctuations of Threshold Voltage by
Using the "Complete Inversion" Definition ........... 268
2.4. Suppression of Random Doping Fluctuations of
Threshold Voltage ................................... 273
2.5. Dimensionality Reduction: 2-D Analysis of 3-D
Problems ............................................ 275
3. Analysis of Threshold Voltage Shift ....................... 278
3.1. Analysis of Threshold Voltage Shift by Using the
"Complete Inversion" Definition ..................... 278
3.2. Analysis of Threshold Voltage Shift by Using the
"Current" Definition ................................ 280
4. Analysis of Fluctuations of Terminal Characteristics ...... 283
4.1. Fluctuations of I-V Characteristics ................. 283
4.2. Fluctuations of Transconductance .................... 285
4.3. Algebra of Superposition Coefficients ............... 288
4.4. Fluctuations of Subthreshold Voltage
Characteristics ..................................... 289
5. Analysis of Fluctuations of Frequency Characteristics ..... 292
5.1. Fluctuations of Admittance Parameters
(y-Parameters) .................................... 292
5.2. Fluctuations of Various Small-Signal Parameters ..... 295
5.3. Fluctuations of Gain Factors ........................ 296
5.4. Fluctuations of Cut-Off Frequencies ................. 297
6. Quantum Mechanical Effects on Fluctuations in
Semiconductor Devices (Density-Gradient Approach) ......... 301
6.1. Calibration of the Density-Gradient Model ........... 303
6.2. Random Doping Induced Fluctuations .................. 306
6.3. Random Oxide Roughness Induced Fluctuations ......... 308
7. Quantum Mechanical Effects on Fluctuations in
Semiconductor Devices (Poisson-Schrodinger Approach) ...... 309
8. Conclusion ................................................ 320
Appendix .................................................. 321
References ................................................ 322
CHAPTER 7. Thermoelectrics for Thermo-Aware Electronics
Shigeo Yamaguchi, Atsushi Yamamoto
1. Thermo-Aware Electronics and Heat ......................... 325
2. Nanotechnology and Information Technology ................. 326
3. Ubiquitous Thermal Network ................................ 327
4. Thermoelectric Power Devices .............................. 329
5. Thermal Imaging ........................................... 333
5.1. Detection Mechanism ................................. 335
5.2. Thermoelectric Arrays ............................... 337
5.3. Resistive Bolometers ................................ 339
5.4. Pyroelectric Arrays ................................. 339
5.5. Uncooled Thermal Arrays ............................. 341
References ................................................ 341
CHAPTER 8. Giant Magnetocaloric Materials and Applications
Manh-Huong Phan, Seong-Cho Yu
1. Introduction .............................................. 344
2. Magnetocaloric Effect and Related Aspects ................. 345
2.1. The Concept of Magnetocaloric Effect ................ 345
2.2. Relationships Between the Magnetic Entropy and
Adiabatic Temperature Changes ....................... 348
2.3. Conventional Magnetocaloric Effect Behavior ......... 349
2.4. Anomalous Magnetocaloric Effect Behavior ............ 349
3. Measurements of the Magnetocaloric Effect ................. 350
3.1. Direct Measurements ................................. 351
3.2. Indirect Measurements ............................... 351
3.3. Specific Problems—First-Order Phase Transitions ..... 352
4. Magnetic Refrigerant Materials ............................ 353
4.1. Gadolinium and Its Alloys ........................... 353
4.2. Aluminides .......................................... 356
4.3. Transition Metal Compounds .......................... 358
4.4. Amorphous Alloys .................................... 363
4.5. Composite Materials ................................. 364
4.6. Perovskite-Like Structured Materials ................ 364
4.7. Some Specific Materials ............................. 372
5. Selection of Magnetic Working Substances .................. 372
5.1. The Criteria for Selecting Magnetic Refrigerants .... 372
5.2. Magnetocaloric Effects and Magnetic Transitions ..... 373
5.3. The Nominated Magnetic Refrigerant Candidates ....... 373
6. Magnetic Refrigeration and its Achievements ............... 374
6.1. Magnetic Refrigeration Cycle ........................ 374
6.2. Magnetic Field ...................................... 376
6.3. Recent Achievements in Near-Room-Temperature
Refrigeration ....................................... 377
7. Magnetic Refrigeration and Its Future Perspectives ........ 377
References ................................................ 378
CHAPTER 9. Alternative Computational Paradigms Inspired by
Quantum Computing
Minoru Fujishima, Koichiro Hoh
1. Introduction .............................................. 384
1.1. Research Background ................................. 384
1.2. Research Target ..................................... 385
1.3. Research Plan ....................................... 385
2. Spectrum Computer ......................................... 386
2.1. Information Representation .......................... 386
2.2. Universal Gates Using Parallel Finite-Impulse
Responses ........................................... 386
2.3. Measurement and Discussion .......................... 388
3. Quantum-Circuit Processor ................................. 389
3.1. Quantum Circuit ..................................... 390
3.2. Quantum-Circuit Processor ........................... 391
3.3. Experiment of Shor's Algorithm ...................... 395
3.4. Summary ............................................. 396
4. Algorithmic Restrictions Inherent to Quantum Computers .... 397
4.1. High-Speed Solution of NP Problems .................. 397
4.2. Solving NP Problem Using the Quantum Computer ....... 398
4.3. Generalities of Quantum Algorithm ................... 398
4.4. Parallel Processing ................................. 399
4.5. Search .............................................. 399
4.6. Summary ............................................. 401
5. Logic Quantum Processor ................................... 401
5.1. Calculation in the Quantum Operation ................ 401
5.2. Logic Quantum Processor ............................. 402
5.3. Measurements and Discussions ........................ 406
5.4. Summary ............................................. 408
6. Quantum Index Processor ................................... 408
6.1. Efficient Memory Usage Utilizing the Quantum
Index ............................................... 409
6.2. Features of the Quantum Index Processor ............. 411
6.3. Measurements ........................................ 414
6.4. Summary ............................................. 417
7. Conclusion and Future Prospects ........................... 418
References ................................................ 419
CHAPTER 10. Nanodimensional Structures in Gaseous Sensorics:
Modeling Aspects
Serghei Dmitriev
1. Introduction .............................................. 421
2. Gas Sensor Modeling: State of the Art ..................... 422
3. Nanodimensional Film Gas Sensor Modeling .................. 423
3.1. Interaction of Oxygen with NDF ...................... 423
3.2. Nanodimensional Film Interaction with Reducing Gas
(CO) ................................................ 429
3.3. Model of SnO2-Based NDF in Humid Atmosphere ......... 438
4. Conclusions ............................................... 442
References ................................................ 444
CHAPTER 11. Atomic Engineering in Type II InAs/GaSb
Superlattice for Multicolor Infrared Camera
Yajun Wei, Aaron Gin, Manijeh Razeghi
1. Introduction .............................................. 448
2. Theoretical Modeling ...................................... 449
2.1. The Type II InAs/GaSb Superlattices ................. 449
2.2. Photodiodes ......................................... 452
2.3. Nanopillar Structures ............................... 455
2.4. Previous Work on Quantum Structure Fabrication and
Characterization .................................... 456
2.5. Nanopillar Basics ................................... 458
2.6. Multicolor Infrared Sensing Using Type II
Nanopillars ......................................... 458
2.7. Modeling of Cylindrical Quantum Dots ................ 458
2.8. Expected Energy Shift Due to Carrier Confinement .... 459
3. Material Growth and Characterization ...................... 460
4. Single Element Photodiode Device Fabrication .............. 463
4.1. Optical Lithography ................................. 464
4.2. Chemical Wet Etching ................................ 465
4.3. Chlorine-Based Dry Etching .......................... 465
5. Device Performance Measurements ........................... 466
5.1. Photodiode Parameter Definitions .................... 466
5.2. Photodiode Parameter Measurements ................... 470
5.3. Photodiode Performance .............................. 472
6. Fabrication of Type II Focal Plane Arrays ................. 479
7. Nanopillar Fabrication .................................... 482
7.1. Electron Beam Lithography ........................... 482
7.2. Nanopillar Device Fabrication Process ............... 482
8. Nanopillars in GaSb Material .............................. 483
9. Nanopillars in InAs/GaSb Superlattice Material ............ 484
9.1. Reactive Ion Etching Using BCl3:Ar and CH4:H2:Ar .... 486
9.2. Reactive Ion Etching Using Cyclic CH4:H2:Ar/02 ...... 488
9.3. Device Fabrication .................................. 488
References ................................................ 494
Index ......................................................... 497
|