Preface ......................................................... v
About the Editors ............................................. xix
List of Contributors .......................................... xxi
Contents of Volumes in This Set ............................... xxv
CHAPTER 1. Preparation, Characterization, and Applications of
Semiconductor Nanocrystals
Wendelin Bucking, Oliver Ehlert, Jürgen Riegler,
Thomas Nann
1. Introduction ................................................ 1
2. Properties .................................................. 2
2.1. Physical Properties ................................... 2
2.2. Mesoscopic Properties ................................. 5
3. Characterization ............................................ 8
3.1. Spectroscopic Methods ................................. 8
3.2. Electrochemical Methods .............................. 15
3.3. Structural and Morphological Analysis ................ 16
4. Synthesis .................................................. 20
4.1. Methods .............................................. 20
4.2. Synthesis of Specific Compounds ...................... 26
5. Applications ............................................... 36
5.1. Chemical Behavior .................................... 36
5.2. Electro-Optical Applications ......................... 40
5.3. Biodiagnostic Applications ........................... 44
References ................................................. 47
CHAPTER 2. Advanced Transmission Electron Microscopy
Characterization of Semiconductor Quantum Structures
Jin Zou, Xiaozhou Liao, Vicki J. Keast,
David J.H. Cockayne
1. Introduction ............................................... 62
2. Construction of the Transmission Electron Microscope ....... 62
3. Structural Characterization ................................ 64
3.1. Diffraction Contrast Technique ....................... 64
3.2. High Resolution Electron Microscopy .................. 69
4. Chemical Characterization .................................. 73
4.1. Chemical Sensitivity of HREM Images .................. 73
4.2. Chemical Sensitivity of Diffraction Contrast
Images ............................................... 73
4.3. Quantitative Scanning Transmission Electron
Microscopy ........................................... 75
4.4. X-Ray Spectrometry ................................... 76
4.5. Electron Energy-Loss Spectroscopy and Energy Filtered
TEM .................................................. 79
5. Electronic Structure Characterization and Optical
Properties ................................................. 81
5.1. Energy-Loss Near Edge Structure ...................... 81
5.2. Plasmons ............................................. 82
5.3. Interband Transitions ................................ 84
5.4. Optical Properties ................................... 84
6. Preparation of ТЕМ Specimens ............................... 85
6.1. Specimen Requirements ................................ 85
6.2. Initial Preparation from Bulk Material ............... 86
6.3. Mechanical Polishing Followed by Ion Beam
Thinning ............................................. 86
6.4. Chemical Etching ..................................... 88
6.5. Cleavage ............................................. 89
6.6. Focused Ion Beam Thinning ............................ 89
6.7. Ultramicrotomy ....................................... 90
7. Conclusion ................................................. 90
References ................................................. 90
CHAPTER 3. Scanning Thermal Microscopy Applied to Thin Films
and Electronic Devices Characterization
Sebastian Volz, Stefan Dilhaire, Stephane Lefevre,
Luis David Patiho Lopez
1. Introduction ............................................... 93
1.1. Motivation ........................................... 93
1.2. Presentation of the Scanning Thermal Microscope ...... 95
2. Local Thermal Conductivity Measurements .................... 97
2.1. Measuring the Thermal Conductivity in the DC Mode .... 97
2.2. Extension to the AC Mode ............................ 103
3. Temperature Measurements .................................. 109
3.1. The Thermal Quadrupoles Method ...................... 109
3.2. Typical Experimental Setup .......................... 111
3.3. SThM Temperature Calibration ........................ 112
4. Applications .............................................. 115
4.1. Thin Films Characterization ......................... 115
4.2. Electronic Devices .................................. 119
5. Conclusion ................................................ 125
References ................................................ 125
CHAPTER 4. GalnNAs Alloy Semiconductors for Optoelectronic
Devices
Wei Li, Markus Pessa
1. Introduction .............................................. 127
2. GalnNAs/GaAs Material System .............................. 129
2.1. Ga(In)NAs Alloy ..................................... 129
2.2. Band Structure of Ga(In)NAs ......................... 129
2.3. Metastability of GalnNAs Alloys ..................... 130
2.4. Band Alignment in Ga(In)NAs/GaAs
Heterostructures .................................... 131
3. Growth of Ga(In)NAs/GaAs Heterostructure .................. 131
3.1. Growth of Ga(In)NAs/GaAs by Molecular-Beam
Epitaxy ............................................. 131
3.2. Growth of Ga(In)NAs/GaAs by MOCVD ................... 132
3.3. Material Quality of Ga(In)NAs/GaAs
Heterostructure ..................................... 132
3.4. The Role of Sb in GalnNAs ........................... 136
3.5. The Role of Hydrogen in GalnNAs ..................... 136
4. GalnNAs/GaAs Quantum Well Heterostructure Lasers .......... 136
4.1. GalnNAs/GaAs Edge-Emitting Laser .................... 136
4.2. GalnNAs/GaAs Vertical-Cavity Surface-Emitting
Lasers .............................................. 139
4.3. GalnNAs/GaAs Vertical External Cavity Surface
Emitting Lasers ..................................... 141
4.4. GalnNAs Saturable Absorber Mirrors .................. 142
5. Summary ................................................. 144
References ................................................ 144
CHAPTER 5. Properties and Applications of Nanocrystalline
Diamond
Tetsuo Soga, Yasuhiko Hayashi, Tarun Sharda
1. Introduction .............................................. 150
2. Deposition Routes of Nanocrystalline Diamond films ........ 150
2.1. Hydrogen Deficient Gas Phase ........................ 152
2.2. Biased Enhanced Growth .............................. 155
2.3. High-Nucleation Density ............................. 156
2.4. Other Non-Chemical Vapor Deposition Routes .......... 157
3. Properties of Nanocrystalline Diamond Film by
Biased-Enhanced Growth .................................... 157
3.1. Nanocrystalline Diamond Film and Conventional
Polycrystalline Diamond Film ........................ 157
3.2. Effects of Growth Parameters ........................ 161
3.3. Optical Properties .................................. 165
3.4. Structural Properties ............................... 166
3.5. Thermal Stability ................................... 168
3.6. Modified Biased-Enhanced Growth: Two-Step-Biasing
Method .............................................. 169
4. Mechanical and Tribological Properties of NCD Films
Grown by Other Methods .................................... 170
5. Applications .............................................. 174
5.1. Electron Field Emission ............................. 174
5.2. Optical Coating ..................................... 174
5.3. Electrochemical Electrodes .......................... 174
5.4. Surface Acoustic Wave Devices ....................... 174
5.5. Microelectromechanical System (MEMS) ................ 175
5.6. DNA Chip ............................................ 175
5.7. Nanocrystalline Diamond-Coated Bent Si Wafers ....... 176
6. Summary ................................................... 177
References ................................................ 177
CHAPTER 6. Methods of Self-Assembling in Fabrication of
Nanodevices
V. Shklover, H. Hofmann
1. Introduction .............................................. 182
2. Self-Assembly of Nanoparticles into Nanoaggregates ........ 184
2.1. Self-Assembly Based on Molecular Recognition of
Ligands ............................................. 184
2.2. Template-Assisted Self-Assembly Using Physical
Confinement and Capillary Forces .................... 184
2.3. "Layer-by-Layer" Assembling ......................... 185
2.4. Self-Assembly on Large Colloids as Templates
Using Spray-Drying Method ........................... 185
2.5. Self-Assembly of Nanofibers by Polymer-Controlled
Mineralization ...................................... 185
2.6. Prediction of New Crystalline States for
Self-Assembled Nanocrystalline Aggregates ........... 185
3. Self-Assembly of Nanoparticles into Quasi-ID Arrays ....... 186
3.1. Carbon Nanotube Templated Self-Assembly ............. 186
3.2. Self-Assembly on LiMo3Se3 Nanowires ................. 186
3.3. Template-Assisted Self-Assembly of Nanoparticles
into ID Arrays Using Physical Confinement and
Capillary Forces .................................... 187
4. Self-Assembly of 2D and 3D Nanocrystalline Arrays on 2D
Substrates ................................................ 187
4.1. Self-Assembly Using Gravity Sedimentation ........... 187
4.2. Self-Assembly of Nanoparticles During Solvent
Evaporation ......................................... 188
4.3. Self-Assembly Inside the Microchannels .............. 189
4.4. Self-Assembly of Colloidal Nanoparticles Between
Two Plates .......................................... 190
4.5. Self-Assembly of Nanoparticles Monolayers on
Vertical Substrates ................................. 190
4.6. Self-Assembly of Nanoarrays of Controlled
Thickness on Vertical Substrates .................... 191
4.7. Self-Assembly Using Shear Flow ...................... 192
4.8. Shear Alignment of Self-Assembled Arrays ............ 193
4.9. Self-Assembly Using Physical Confinement and
Attractive Capillary Forces ......................... 193
4.10. Self-Assembly on Templated Substrates ............... 196
4.11. Template Assisted Self-Assembly Using Physical
Confinement and Capillary Forces .................... 197
4.12. Self-Assembly Nanosphere Lithography ................ 197
4.13. Self-Assembling of Nanoparticles on
Phase-Separated Diblock Copolymers .................. 198
4.14. Self-Assembly, Influenced by Dynamics of Colloidal
Organization During Solvent Evaporation ............. 199
4.15. Self-Assembly as a Result of Progressive Condensation
of Intermediate Structural Building Blocks .......... 199
4.16. Assembling of Colloidal Particles Under Electric
Field or Magnetic Field ............................. 200
5. Nanodevices ............................................... 201
5.1. Nanosensors .......................................... 201
5.2. Optical and Electronic Nanodevices ................... 203
6. Conclusion ................................................ 210
References ................................................ 211
CHAPTER 7. Computed Electrostatic Potentials and Local
onization Energies on Model Nanotube Surfaces
Peter Politzer, Jane S. Murray, Pat Lane,
Monica C. Concha
1. Introduction and Background ............................... 215
2. Structures ................................................ 217
3. Boron/Nitrogen and Boron/Nitrogen/Carbon Nanotubes ........ 220
4. Properties and Applications ............................... 220
4.1. Mechanical .......................................... 220
4.2. Electrical Conduction ............................... 221
4.3. Adsorption .......................................... 222
5. Noncovalent (Physical) and Covalent (Chemical)
Interactions .............................................. 223
5.1. General ............................................. 223
5.2. Electrostatic Potential ............................. 223
5.3. Average Local Ionization Energy ..................... 225
5.4. Complementarity of Vs(r) and Is(r) .................. 225
6. Electrostatic Potentials on Nanotube Surfaces ............. 226
6.1. General ............................................. 226
6.2. Carbon Systems ...................................... 227
6.3. BVNV Systems ........................................ 231
6.4. C2aBaNa. Systems .................................... 232
7. Average Local Ionization Energies on Nanotube Surfaces .... 233
8. Discussion and Summary .................................... 234
References ................................................ 236
CHAPTER 8. PbSe Nanocrystals: From Spherical Core-Shell
Structures to Rods, Wires, Tetrapods, and Assemblies
E. Lifshitz, A. Sashchiuk, A. Kigel, M. Brumer,
M. Bashouti, L. Amirav
1. Introduction .............................................. 241
1.1. Spherical Nanocrystals .............................. 242
1.2. Quantum Rods and Quantum Wires ...................... 242
1.3. Nanocrystals' Assemblies ............................ 244
1.4. PbSe Nanocrystals ................................... 244
1.5. Overview of the Present Study ....................... 244
2. Spherical PbSe/PbS and PbSe/PbSeA Core-Shell
Nanocrystals .............................................. 245
2.1. Experimentation ..................................... 246
2.2. Structural and Optical Characterization ............. 247
3. PbSe Rods, Wires, and Tetrapods ........................... 251
3.1. Synthesis ........................................... 251
3.2. Structural Characterization ......................... 252
4. Polycrystalline and Ordered Assemblies of PbSe
Nanocrystals .............................................. 255
4.1. Synthesis ........................................... 255
4.2. Structural, Optical, and Electrical
Characterization .................................... 256
5. Summary ................................................... 261
References ................................................ 262
CHAPTER 9. Dye-Sensitized Semiconductor Nanostructures
K. Tennakone
1. Dye Sensitization ......................................... 267
2. Dye-Sensitized Photoelectrochemical Cells Based on
Plane Electrodes .......................................... 269
3. n-Type Semiconductor/Dye/p-Type Semiconductor
Heterojunction ............................................ 272
4. Dye-Sensitized Photoelectrochemical Solar Cells Based
on Nanostructured Semiconductor Films ..................... 273
5. Mechanism of Operation of Dye-Sensitized Nanostructured
Photoelectrochemical Cells ................................ 275
6. Trapping and Trap-Mediated Recombination .................. 276
7. Transient Responses of Dye-Sensitized Nanostructures ...... 277
8. Mechanism of Dye-Sensitized Electron Injection to
Semiconductor Nanostructures .............................. 280
9. Dye-Sensitized Nanostructured Heterojunctions ............. 281
10. Dye-Sensitized Composite Semiconductor Nanostructures ..... 283
11. Dye-Sensitization as a Means of Ballistic Injection of
Carriers to a Semiconductor ............................... 286
12. Dye-Sensitization of Low-Dimensional and Superlattice
Semiconductor Structures .................................. 288
13. Dyes for Sensitization of Semiconductors .................. 288
14. Conclusion ................................................ 290
References ................................................ 290
CHAPTER 10. Optical Physics and Applications of Luminescent
Nanoparticles
Wei Chen, Alan G. Joly, Nicole Y. Morgan
1. Introduction .............................................. 295
1.1. Quantum Size Confinement ............................ 295
1.2. Important Optical Parameters: Energy Gap,
Binding Energy, Phonon Coupling Factor and Stokes
Shift ............................................... 297
2. Luminescence Processes in Semiconductor Nanoparticles:
Absorption, Excitation, Relaxation and Recombination ...... 301
3. Luminescence Dynamics ..................................... 306
4. Photoluminescence of Dilute Magnetic Semiconductor
Nanoparticles ............................................. 308
5. Nanoparticle Electroluminescence and Applications in
Displays .................................................. 310
6. Upconversion Luminescence of Nanoparticles ................ 314
7. Biological Applications of Luminescent Nanoparticles ...... 318
8. Epilogue .................................................. 329
References ................................................ 330
CHAPTER 11. High Photosensitive Films of Lead Chalcogenides
Zinovi Dashevsky
1. Introduction .............................................. 335
2. Basic Properties .......................................... 336
3. Fabrication of Nanocrystalline Films ...................... 338
4. Influence of Potential Relief on Transport Properties ..... 340
5. Model of Physical Properties of Photosensitive Films ...... 344
5.1. Conductivity ........................................ 347
5.2. Hall Effect ......................................... 348
5.3. Influence of Illumination on the Surface Potential
Relief .............................................. 349
5.4. Photoconductivity ................................... 352
5.5. Recombination Processes ............................. 353
6. Results and Comparison with Theoretical Model ............. 355
References ................................................ 358
CHAPTER 12. Properties of Quantum Dots and Quantum Dot Arrays
Zhenhong Dai, Jinzuo Sun, Jun Ni
1. Introduction .............................................. 361
2. Category and Fabrication of Quantum Dots and Quant
um Dot Arrays ............................................. 363
2.1. Lateral Etched Semiconductor Quantum Dots ........... 363
2.2. Self-Assembled Semiconductor Quantum Dots ........... 364
2.3. Vertical Gate-Controlled Semiconductor Quantum
Dots ................................................ 368
2.4. Ordered Quantum Dot Arrays and Patterns ............. 369
3. Novel Physical Properties of Quantum Dots and Quantum
Dot Arrays ................................................ 371
3.1. Electronic Properties of Quantum Dots ............... 372
3.2. Magnetic Properties of Quantum Dots ................. 378
3.3. Excitonic and Optical Properties of Quantum Dots .... 381
4. Theory Method in Study of Quantum Dots .................... 385
4.1. Constant Interaction Model .......................... 386
4.2. Direct Diagonalization of the Hamiltonian ........... 388
4.3. Spin-Density Functional Theory ...................... 390
4.4. Monte Carlo Method .................................. 392
4.5. Unrestricted Hartree-Fock Method .................... 396
5. Properties of Double Quantum Dot and Array System ......... 398
5.1. Electron Properties in Lateral Coupled Quantum
Dots ................................................ 399
5.2. Electron Properties in Vertical Coupled Quantum
Dots ................................................ 401
6. New Phenomenon in the Quantum Dots ........................ 402
7. Development and Potential Application of Quantum Dots ..... 403
References ................................................ 404
CHAPTER 13. Fabrication and Characteristics of Nanostructured
Materials Using Anodic Porous Alumina
Qixin Guo, Hiroshi Ogawa, Harry Ruda
1. Introduction .............................................. 407
2. Anodic Porous Alumina ..................................... 409
3. Nanostructured Materials .................................. 412
3.1. GaAs ................................................ 412
3.2. InGaAs .............................................. 419
3.3. AlGaAs .............................................. 423
3.4. InN ................................................. 425
3.5. ZnTe ................................................ 428
3.6. Carbon .............................................. 429
3.7. Other Materials ..................................... 430
4. Conclusion ................................................ 433
References ................................................ 433
CHAPTER 14. Non-Lithographic Nanoarrays Fabricated Using
Porous Alumina
Latika Menon
1. Introduction .............................................. 437
2. Electrochemical Fabrication of Nanoporous Alumina
Membranes ................................................. 438
2.1. Fabrication of Highly Ordered Pore Arrays ......... 440
3. Theoretical Understanding of Pore Formation ............... 443
4. Methods of Nanofabrication Using Porous Alumina ........... 444
4.1. AC Electrodeposition ................................ 444
4.2. DC Electrodeposition ................................ 445
4.3. Pressure Injection .................................. 447
4.4. Transfer of Nanoporous Alumina Pattern .............. 448
5. Conclusions ............................................... 453
References ................................................ 454
CHAPTER 15. Electrochemical Synthesis of One-Dimensional
Semiconductor Nanostructures
Dongsheng Xu
1. Introduction .............................................. 458
2. Semiconductor Nanowires by Template-Assisted
Electrochemical Synthesis ................................. 458
2.1. General ............................................. 458
2.2. Direct-Current Electrochemical Deposition ........... 459
2.3. Alternating-Current Electrochemical Deposition ...... 465
2.4. Electrochemically Induced Deposition ................ 465
2.5. Sol-Gel Electrophoretic Deposition .................. 467
2.6. Electrochemically Induced Sol-Gel Synthesis ......... 468
2.7. Hybrid Electrochemical/Chemical Synthesis ........... 469
3. Electrochemical Synthetic Strategies for Semiconductor
Nanotubes ................................................. 471
3.1. MultiStep Replication Methods ....................... 471
3.2. Nanotubes of Oxides by Electrochemically Induced
Sol-Gel Deposition .................................. 473
4. Template-Free Electrochemical Synthetic Strategies ........ 474
4.1. Electrodeposition in Self-Assembly Molecular
Structures .......................................... 474
4.2. Direct Electrodeposition Based on Capping
Reagents ............................................ 474
4.3. Electrical-Field-Assisted Assembly .................. 477
5. Structures, Properties, and Applications .................. 477
5.1. Crystal Structure ................................... 477
5.2. Energy-Band Engineering through Composition
Modulation .......................................... 478
5.3. Photoluminescence Properties ........................ 480
5.4. Free-Standing ID Nanostructure Arrays ............... 481
5.5. Photovoltaics and Photocatalysis .................... 483
5.6. Nanodevices ......................................... 483
6. Conclusion ................................................ 486
References ................................................ 486
Index ..................................................... 491
|