Handbook of semiconductor nanostructures and nanodevices; 2 (American Scientific Publischers, 2006). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаHandbook of semiconductor nanostructures and nanodevices. Vol.2: Nanofabrication and nanoscale characterization / ed. by Balandin A.A., Wang K.L. - Stevenson Ranch: American Scientific Publischers, 2006. - xxvi, 511 p. - ISBN 1-58883-075-6
 

Оглавление / Contents
 
Preface ......................................................... v
About the Editors ............................................. xix
List of Contributors .......................................... xxi
Contents of Volumes in This Set ............................... xxv

CHAPTER 1.  Preparation, Characterization, and Applications of
            Semiconductor Nanocrystals
               Wendelin Bucking, Oliver Ehlert, Jürgen Riegler,
               Thomas Nann

1.  Introduction ................................................ 1
2.  Properties .................................................. 2
    2.1.  Physical Properties ................................... 2
    2.2.  Mesoscopic Properties ................................. 5
3.  Characterization ............................................ 8
    3.1.  Spectroscopic Methods ................................. 8
    3.2.  Electrochemical Methods .............................. 15
    3.3.  Structural and Morphological Analysis ................ 16
4.  Synthesis .................................................. 20
    4.1.  Methods .............................................. 20
    4.2.  Synthesis of Specific Compounds ...................... 26
5.  Applications ............................................... 36
    5.1.  Chemical Behavior .................................... 36
    5.2.  Electro-Optical Applications ......................... 40
    5.3.  Biodiagnostic Applications ........................... 44
    References ................................................. 47

CHAPTER 2.  Advanced Transmission Electron Microscopy
           Characterization of Semiconductor Quantum Structures
              Jin Zou, Xiaozhou Liao, Vicki J. Keast,
              David J.H. Cockayne

1.  Introduction ............................................... 62
2.  Construction of the Transmission Electron Microscope ....... 62
3.  Structural Characterization ................................ 64
    3.1.  Diffraction Contrast Technique ....................... 64
    3.2.  High Resolution Electron Microscopy .................. 69
4.  Chemical Characterization .................................. 73
    4.1.  Chemical Sensitivity of HREM Images .................. 73
    4.2.  Chemical Sensitivity of Diffraction Contrast
          Images ............................................... 73
    4.3.  Quantitative Scanning Transmission Electron
          Microscopy ........................................... 75
    4.4.  X-Ray Spectrometry ................................... 76
    4.5.  Electron Energy-Loss Spectroscopy and Energy Filtered
          TEM .................................................. 79
5.  Electronic Structure Characterization and Optical
    Properties ................................................. 81
    5.1.  Energy-Loss Near Edge Structure ...................... 81
    5.2.  Plasmons ............................................. 82
    5.3.  Interband Transitions ................................ 84
    5.4.  Optical Properties ................................... 84
6.  Preparation of ТЕМ Specimens ............................... 85
    6.1.  Specimen Requirements ................................ 85
    6.2.  Initial Preparation from Bulk Material ............... 86
    6.3.  Mechanical Polishing Followed by Ion Beam
          Thinning ............................................. 86
    6.4.  Chemical Etching ..................................... 88
    6.5.  Cleavage ............................................. 89
    6.6.  Focused Ion Beam Thinning ............................ 89
    6.7.  Ultramicrotomy ....................................... 90
7.  Conclusion ................................................. 90
    References ................................................. 90

CHAPTER 3.  Scanning Thermal Microscopy Applied to Thin Films
            and Electronic Devices Characterization
               Sebastian Volz, Stefan Dilhaire, Stephane Lefevre,
               Luis David Patiho Lopez

1.  Introduction ............................................... 93
    1.1.  Motivation ........................................... 93
    1.2.  Presentation of the Scanning Thermal Microscope ...... 95
2.  Local Thermal Conductivity Measurements .................... 97
    2.1.  Measuring the Thermal Conductivity in the DC Mode .... 97
    2.2.  Extension to the AC Mode ............................ 103
3.  Temperature Measurements .................................. 109
    3.1.  The Thermal Quadrupoles Method ...................... 109
    3.2.  Typical Experimental Setup .......................... 111
    3.3.  SThM Temperature Calibration ........................ 112
4.  Applications .............................................. 115
    4.1.  Thin Films Characterization ......................... 115
    4.2.  Electronic Devices .................................. 119
5.  Conclusion ................................................ 125
    References ................................................ 125

CHAPTER 4.  GalnNAs Alloy Semiconductors for Optoelectronic
            Devices
               Wei Li, Markus Pessa

1.  Introduction .............................................. 127
2.  GalnNAs/GaAs Material System .............................. 129
    2.1.  Ga(In)NAs Alloy ..................................... 129
    2.2.  Band Structure of Ga(In)NAs ......................... 129
    2.3.  Metastability of GalnNAs Alloys ..................... 130
    2.4.  Band Alignment in Ga(In)NAs/GaAs
          Heterostructures .................................... 131
3.  Growth of Ga(In)NAs/GaAs Heterostructure .................. 131
    3.1.  Growth of Ga(In)NAs/GaAs by Molecular-Beam
          Epitaxy ............................................. 131
    3.2.  Growth of Ga(In)NAs/GaAs by MOCVD ................... 132
    3.3.  Material Quality of Ga(In)NAs/GaAs
          Heterostructure ..................................... 132
    3.4.  The Role of Sb in GalnNAs ........................... 136
    3.5.  The Role of Hydrogen in GalnNAs ..................... 136
4.  GalnNAs/GaAs Quantum Well Heterostructure Lasers .......... 136
    4.1.  GalnNAs/GaAs Edge-Emitting Laser .................... 136
    4.2.  GalnNAs/GaAs Vertical-Cavity Surface-Emitting
          Lasers .............................................. 139
    4.3.  GalnNAs/GaAs Vertical External Cavity Surface
          Emitting Lasers ..................................... 141
    4.4.  GalnNAs Saturable Absorber Mirrors .................. 142
5.    Summary ................................................. 144
    References ................................................ 144

CHAPTER 5.  Properties and Applications of Nanocrystalline
            Diamond
               Tetsuo Soga, Yasuhiko Hayashi, Tarun Sharda

1.  Introduction .............................................. 150
2.  Deposition Routes of Nanocrystalline Diamond films ........ 150
    2.1.  Hydrogen Deficient Gas Phase ........................ 152
    2.2.  Biased Enhanced Growth .............................. 155
    2.3.  High-Nucleation Density ............................. 156
    2.4.  Other Non-Chemical Vapor Deposition Routes .......... 157
3.  Properties of Nanocrystalline Diamond Film by 
    Biased-Enhanced Growth .................................... 157
    3.1.  Nanocrystalline Diamond Film and Conventional
          Polycrystalline Diamond Film ........................ 157
    3.2.  Effects of Growth Parameters ........................ 161
    3.3.  Optical Properties .................................. 165
    3.4.  Structural Properties ............................... 166
    3.5.  Thermal Stability ................................... 168
    3.6.  Modified Biased-Enhanced Growth: Two-Step-Biasing
          Method .............................................. 169
4.  Mechanical and Tribological Properties of NCD Films
    Grown by Other Methods .................................... 170
5.  Applications .............................................. 174
    5.1.  Electron Field Emission ............................. 174
    5.2.  Optical Coating ..................................... 174
    5.3.  Electrochemical Electrodes .......................... 174
    5.4.  Surface Acoustic Wave Devices ....................... 174
    5.5.  Microelectromechanical System (MEMS) ................ 175
    5.6.  DNA Chip ............................................ 175
    5.7.  Nanocrystalline Diamond-Coated Bent Si Wafers ....... 176
6.  Summary ................................................... 177
    References ................................................ 177

CHAPTER 6.  Methods of Self-Assembling in Fabrication of
            Nanodevices
               V. Shklover, H. Hofmann

1.  Introduction .............................................. 182
2.  Self-Assembly of Nanoparticles into Nanoaggregates ........ 184
    2.1.  Self-Assembly Based on Molecular Recognition of
          Ligands ............................................. 184
    2.2.  Template-Assisted Self-Assembly Using Physical
          Confinement and Capillary Forces .................... 184
    2.3.  "Layer-by-Layer" Assembling ......................... 185
    2.4.  Self-Assembly on Large Colloids as Templates
          Using Spray-Drying Method ........................... 185
    2.5.  Self-Assembly of Nanofibers by Polymer-Controlled
          Mineralization ...................................... 185
    2.6.  Prediction of New Crystalline States for
          Self-Assembled Nanocrystalline Aggregates ........... 185
3.  Self-Assembly of Nanoparticles into Quasi-ID Arrays ....... 186
    3.1.  Carbon Nanotube Templated Self-Assembly ............. 186
    3.2.  Self-Assembly on LiMo3Se3 Nanowires ................. 186
    3.3.  Template-Assisted Self-Assembly of Nanoparticles
          into ID Arrays Using Physical Confinement and
          Capillary Forces .................................... 187
4.  Self-Assembly of 2D and 3D Nanocrystalline Arrays on 2D
    Substrates ................................................ 187
    4.1.  Self-Assembly Using Gravity Sedimentation ........... 187
    4.2.  Self-Assembly of Nanoparticles During Solvent
          Evaporation ......................................... 188
    4.3.  Self-Assembly Inside the Microchannels .............. 189
    4.4.  Self-Assembly of Colloidal Nanoparticles Between
          Two Plates .......................................... 190
    4.5.  Self-Assembly of Nanoparticles Monolayers on
          Vertical Substrates ................................. 190
    4.6.  Self-Assembly of Nanoarrays of Controlled 
          Thickness on Vertical Substrates .................... 191
    4.7.  Self-Assembly Using Shear Flow ...................... 192
    4.8.  Shear Alignment of Self-Assembled Arrays ............ 193
    4.9.  Self-Assembly Using Physical Confinement and
          Attractive Capillary Forces ......................... 193
    4.10. Self-Assembly on Templated Substrates ............... 196
    4.11. Template Assisted Self-Assembly Using Physical
          Confinement and Capillary Forces .................... 197
    4.12. Self-Assembly Nanosphere Lithography ................ 197
    4.13. Self-Assembling of Nanoparticles on 
          Phase-Separated Diblock Copolymers .................. 198
    4.14. Self-Assembly, Influenced by Dynamics of Colloidal
          Organization During Solvent Evaporation ............. 199
    4.15. Self-Assembly as a Result of Progressive Condensation
          of Intermediate Structural Building Blocks .......... 199
    4.16. Assembling of Colloidal Particles Under Electric
          Field or Magnetic Field ............................. 200
5.  Nanodevices ............................................... 201
    5.1. Nanosensors .......................................... 201
    5.2. Optical and Electronic Nanodevices ................... 203
6.  Conclusion ................................................ 210
    References ................................................ 211

CHAPTER 7.  Computed Electrostatic Potentials and Local
            onization Energies on Model Nanotube Surfaces
               Peter Politzer, Jane S. Murray, Pat Lane,
               Monica C. Concha

1.  Introduction and Background ............................... 215
2.  Structures ................................................ 217
3.  Boron/Nitrogen and Boron/Nitrogen/Carbon Nanotubes ........ 220
4.  Properties and Applications ............................... 220
    4.1.  Mechanical .......................................... 220
    4.2.  Electrical Conduction ............................... 221
    4.3.  Adsorption .......................................... 222
5.  Noncovalent (Physical) and Covalent (Chemical)
    Interactions .............................................. 223
    5.1.  General ............................................. 223
    5.2.  Electrostatic Potential ............................. 223
    5.3.  Average Local Ionization Energy ..................... 225
    5.4.  Complementarity of Vs(r) and Is(r) .................. 225
6.  Electrostatic Potentials on Nanotube Surfaces ............. 226
    6.1.  General ............................................. 226
    6.2.  Carbon Systems ...................................... 227
    6.3.  BVNV Systems ........................................ 231
    6.4.  C2aBaNa. Systems .................................... 232
7.  Average Local Ionization Energies on Nanotube Surfaces .... 233
8.  Discussion and Summary .................................... 234
    References ................................................ 236
    
CHAPTER 8.  PbSe Nanocrystals: From Spherical Core-Shell
            Structures to Rods, Wires, Tetrapods, and Assemblies
               E. Lifshitz, A. Sashchiuk, A. Kigel, M. Brumer,
               M. Bashouti, L. Amirav

1.  Introduction .............................................. 241
    1.1.  Spherical Nanocrystals .............................. 242
    1.2.  Quantum Rods and Quantum Wires ...................... 242
    1.3.  Nanocrystals' Assemblies ............................ 244
    1.4.  PbSe Nanocrystals ................................... 244
    1.5.  Overview of the Present Study ....................... 244
2.  Spherical PbSe/PbS and PbSe/PbSeA Core-Shell
    Nanocrystals .............................................. 245
    2.1.  Experimentation ..................................... 246
    2.2.  Structural and Optical Characterization ............. 247
3.  PbSe Rods, Wires, and Tetrapods ........................... 251
    3.1.  Synthesis ........................................... 251
    3.2.  Structural Characterization ......................... 252
4.  Polycrystalline and Ordered Assemblies of PbSe
    Nanocrystals .............................................. 255
    4.1.  Synthesis ........................................... 255
    4.2.  Structural, Optical, and Electrical
          Characterization .................................... 256
5.  Summary ................................................... 261
    References ................................................ 262

CHAPTER 9.  Dye-Sensitized Semiconductor Nanostructures
               K. Tennakone

1.  Dye Sensitization ......................................... 267
2.  Dye-Sensitized Photoelectrochemical Cells Based on
    Plane Electrodes .......................................... 269
3.  n-Type Semiconductor/Dye/p-Type Semiconductor
    Heterojunction ............................................ 272
4.  Dye-Sensitized Photoelectrochemical Solar Cells Based
    on Nanostructured Semiconductor Films ..................... 273
5.  Mechanism of Operation of Dye-Sensitized Nanostructured
    Photoelectrochemical Cells ................................ 275
6.  Trapping and Trap-Mediated Recombination .................. 276
7.  Transient Responses of Dye-Sensitized Nanostructures ...... 277
8.  Mechanism of Dye-Sensitized Electron Injection to
    Semiconductor Nanostructures .............................. 280
9.  Dye-Sensitized Nanostructured Heterojunctions ............. 281
10. Dye-Sensitized Composite Semiconductor Nanostructures ..... 283
11. Dye-Sensitization as a Means of Ballistic Injection of
    Carriers to a Semiconductor ............................... 286
12. Dye-Sensitization of Low-Dimensional and Superlattice
    Semiconductor Structures .................................. 288
13. Dyes for Sensitization of Semiconductors .................. 288
14. Conclusion ................................................ 290
    References ................................................ 290

CHAPTER 10. Optical Physics and Applications of Luminescent
            Nanoparticles
               Wei Chen, Alan G. Joly, Nicole Y. Morgan

1.  Introduction .............................................. 295
    1.1.  Quantum Size Confinement ............................ 295
    1.2.  Important Optical Parameters: Energy Gap,
          Binding Energy, Phonon Coupling Factor and Stokes
          Shift ............................................... 297
2.  Luminescence Processes in Semiconductor Nanoparticles:
    Absorption, Excitation, Relaxation and Recombination ...... 301
3.  Luminescence Dynamics ..................................... 306
4.  Photoluminescence of Dilute Magnetic Semiconductor
    Nanoparticles ............................................. 308
5.  Nanoparticle Electroluminescence and Applications in
    Displays .................................................. 310
6.  Upconversion Luminescence of Nanoparticles ................ 314
7.  Biological Applications of Luminescent Nanoparticles ...... 318
8.  Epilogue .................................................. 329
    References ................................................ 330

CHAPTER 11. High Photosensitive Films of Lead Chalcogenides
               Zinovi Dashevsky

1.  Introduction .............................................. 335
2.  Basic Properties .......................................... 336
3.  Fabrication of Nanocrystalline Films ...................... 338
4.  Influence of Potential Relief on Transport Properties ..... 340
5.  Model of Physical Properties of Photosensitive Films ...... 344
    5.1.  Conductivity ........................................ 347
    5.2.  Hall Effect ......................................... 348
    5.3.  Influence of Illumination on the Surface Potential
          Relief .............................................. 349
    5.4.  Photoconductivity ................................... 352
    5.5.  Recombination Processes ............................. 353
6.  Results and Comparison with Theoretical Model ............. 355
    References ................................................ 358

CHAPTER 12. Properties of Quantum Dots and Quantum Dot Arrays
               Zhenhong Dai, Jinzuo Sun, Jun Ni

1.  Introduction .............................................. 361
2.  Category and Fabrication of Quantum Dots and Quant
    um Dot Arrays ............................................. 363
    2.1.  Lateral Etched Semiconductor Quantum Dots ........... 363
    2.2.  Self-Assembled Semiconductor Quantum Dots ........... 364
    2.3.  Vertical Gate-Controlled Semiconductor Quantum
          Dots ................................................ 368
    2.4.  Ordered Quantum Dot Arrays and Patterns ............. 369
3.  Novel Physical Properties of Quantum Dots and Quantum
    Dot Arrays ................................................ 371
    3.1.  Electronic Properties of Quantum Dots ............... 372
    3.2.  Magnetic Properties of Quantum Dots ................. 378
    3.3.  Excitonic and Optical Properties of Quantum Dots .... 381
4.  Theory Method in Study of Quantum Dots .................... 385
    4.1.  Constant Interaction Model .......................... 386
    4.2.  Direct Diagonalization of the Hamiltonian ........... 388
    4.3.  Spin-Density Functional Theory ...................... 390
    4.4.  Monte Carlo Method .................................. 392
    4.5.  Unrestricted Hartree-Fock Method .................... 396
5.  Properties of Double Quantum Dot and Array System ......... 398
    5.1.  Electron Properties in Lateral Coupled Quantum
          Dots ................................................ 399
    5.2.  Electron Properties in Vertical Coupled Quantum
          Dots ................................................ 401
6.  New Phenomenon in the Quantum Dots ........................ 402
7.  Development and Potential Application of Quantum Dots ..... 403
    References ................................................ 404
   
CHAPTER 13. Fabrication and Characteristics of Nanostructured
            Materials Using Anodic Porous Alumina
               Qixin Guo, Hiroshi Ogawa, Harry Ruda

1.  Introduction .............................................. 407
2.  Anodic Porous Alumina ..................................... 409
3.  Nanostructured Materials .................................. 412
    3.1.  GaAs ................................................ 412
    3.2.  InGaAs .............................................. 419
    3.3.  AlGaAs .............................................. 423
    3.4.  InN ................................................. 425
    3.5.  ZnTe ................................................ 428
    3.6.  Carbon .............................................. 429
    3.7.  Other Materials ..................................... 430
4.  Conclusion ................................................ 433
    References ................................................ 433

CHAPTER 14. Non-Lithographic Nanoarrays Fabricated Using
            Porous Alumina
               Latika Menon

1.  Introduction .............................................. 437
2.  Electrochemical Fabrication of Nanoporous Alumina
    Membranes ................................................. 438
    2.1.    Fabrication of Highly Ordered Pore Arrays ......... 440
3.  Theoretical Understanding of Pore Formation ............... 443
4.  Methods of Nanofabrication Using Porous Alumina ........... 444
    4.1.  AC Electrodeposition ................................ 444
    4.2.  DC Electrodeposition ................................ 445
    4.3.  Pressure Injection .................................. 447
    4.4.  Transfer of Nanoporous Alumina Pattern .............. 448
5.  Conclusions ............................................... 453
    References ................................................ 454

CHAPTER 15. Electrochemical Synthesis of One-Dimensional
            Semiconductor Nanostructures
               Dongsheng Xu

1.  Introduction .............................................. 458
2.  Semiconductor Nanowires by Template-Assisted
    Electrochemical Synthesis ................................. 458
    2.1.  General ............................................. 458
    2.2.  Direct-Current Electrochemical Deposition ........... 459
    2.3.  Alternating-Current Electrochemical Deposition ...... 465
    2.4.  Electrochemically Induced Deposition ................ 465
    2.5.  Sol-Gel Electrophoretic Deposition .................. 467
    2.6.  Electrochemically Induced Sol-Gel Synthesis ......... 468
    2.7.  Hybrid Electrochemical/Chemical Synthesis ........... 469
3.  Electrochemical Synthetic Strategies for Semiconductor
    Nanotubes ................................................. 471
    3.1.  MultiStep Replication Methods ....................... 471
    3.2.  Nanotubes of Oxides by Electrochemically Induced
          Sol-Gel Deposition .................................. 473
4.  Template-Free Electrochemical Synthetic Strategies ........ 474
    4.1.  Electrodeposition in Self-Assembly Molecular
          Structures .......................................... 474
    4.2.  Direct Electrodeposition Based on Capping
          Reagents ............................................ 474
    4.3.  Electrical-Field-Assisted Assembly .................. 477
5.  Structures, Properties, and Applications .................. 477
    5.1.  Crystal Structure ................................... 477
    5.2.  Energy-Band Engineering through Composition
          Modulation .......................................... 478
    5.3.  Photoluminescence Properties ........................ 480
    5.4.  Free-Standing ID Nanostructure Arrays ............... 481
    5.5.  Photovoltaics and Photocatalysis .................... 483
    5.6.  Nanodevices ......................................... 483
6.  Conclusion ................................................ 486
    References ................................................ 486
    Index ..................................................... 491


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:19:26 2019. Размер: 29,314 bytes.
Посещение N 1917 c 27.01.2009