Handbook of semiconductor nanostructures and nanodevices; 1 (American Scientific Publischers, 2006). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаHandbook of semiconductor nanostructures and nanodevices. Vol.1: Quantum dots, nanowires and self-assemblies / ed. by Balandin A.A., Wang K.L. - Stevenson Ranch: American Scientific Publischers, 2006. - xxiv, 515 p. - ISBN 1-58883-074-8
 

Оглавление / Contents
 
Preface ......................................................... v
About the Editors ............................................. xix
List of Contributors .......................................... xxi
Contents of Volumes in This Set ............................. xxiii

CHAPTER 1.  Self-Assembled Germanium Quantum Dots on Silicon
            and Their Optoelectronic Devices
               I.L.Liu, S.Tong, K.L.Wang

1.  Introduction ................................................ 1
2.  Structural Properties of Germanium (Ge) Quantum Dots ........ 2
    2.1.  Single-Layered Ge Quantum Dots on Planar Si ........... 2
    2.2.  Ge Quantum Dot Superlattice Growth .................... 9
3.  Optical Properties of Ge Quantum Dots ...................... 14
    3.1.  Interband Properties: Photoluminescence Studies ...... 14
    3.2.  Intersubband Properties .............................. 20
4.  Ge quantum dot optoelectronic devices ...................... 22
    4.1.  Ge Quantum Dot Light Emitting Diodes ................. 22
    4.2.  Near-Infrared p-i-n Ge Quantum Dot
          Photodetectors Operating at 1.31 - 1.55 μm ........... 24
    4.3.  Mid-Infrared Ge Quantum Dot Photodetectors
          Operating at 3 — 5 + μm .............................. 26
5.  Summary .................................................... 29
    References ................................................. 29

CHAPTER 2.  Germanium Self-Assembled Quantum Dots on Silicon:
            Growth, Electronic Transport, Optical Phenomena,
            and Devices
               A.I. Yakimov, A.V. Dvurechenskii, A.I. Nikiforov

1.  Introduction ............................................... 34
2.  Strain-Driven Quantum Dot Self-Assembly .................... 34
    2.1.  Basic Concepts ....................................... 35
    2.2.  Growth of Germanium (Ge) Self-Assembled
          Quantum Dots on Si(100) Surface ...................... 36
    2.3.  Self-Assembling ...................................... 37
    2.4.  Size and Density of Self-Assembled Quantum Dots ...... 38
    2.5.  In Situ Reflection High Energy Electron
          Diffraction Control of Quantum Dot Growth ............ 39
3.  Theoretical Consideration of Electronic Structure .......... 41
    3.1.  Spatial Distribution of Elastic Strains .............. 41
    3.2.  Hole Energy Spectrum ................................. 44
    3.3.  Wave Functions and g-Factor of Holes in
          Ge/Si Quantum Dots ................................... 46
    3.4.  Electronic Configuration of Excitons and
          Excitonic Complexes .................................. 58
4.  Single-Electron Effects .................................... 60
    4.1.  Electron Tunneling Spectroscopy ...................... 60
    4.2.  Capacitance Tunneling Spectroscopy ................... 62
    4.3.  Tunneling Currents in Schottky Diodes ................ 63
5.  Hole Transport and Long-Range Coulomb Interaction .......... 64
    5.1.  Field Effect in Array of Charge-Tunable Dots ......... 66
    5.2.  Crossover from Efros-Shklovskii to Mott
          Variable-Range Hopping ............................... 70
    5.3.  Universal Prefactor in Unscreened Regime of
          Variable-Range Hopping ............................... 74
6.  Optical Properties ......................................... 76
    6.1.  Spatially Indirect Excitons .......................... 76
    6.2.  Stark Effect in Ge/SiCySi Quantum Dots ............... 81
    6.3.  Negative Interband Photoconductivity ................. 85
    6.4.  Depolarization Shift of the Interlevel Resonance ..... 86
7.  Applications ............................................... 88
    7.1.  Quantum-Dot Metal-Oxide Semiconductor
          Field-Effect Transistor .............................. 88
    7.2.  Ge/Si Self-Assembled Quantum Dots Photodetectors
          for Near- and Midinfrared Operation .................. 91
8.  Concluding Remarks ......................................... 98
    References ................................................. 98

CHAPTER 3.  The Size Control and Patterning of Nanocrystalline
            Silicon Quantum Dots
               Kunji Chen, Xinfan Huang

1.  Introduction .............................................. 104
2.  The Mechanism and Experiments on Constrained
    Growth of Uniform nc-Si Grains ............................ 105
    2.1.  General Remarks ..................................... 105
    2.2.  The Model of Constrained Growth ..................... 106
    2.3.  Experiments and Results ............................. 109
3.  Laser Interference-Induced Crystallization and
    Formation of Patterned nc-Si Structures ................... 113
    3.1.  The Intensity Distribution of Laser
          Interference Produced by a Phase-Shift Grating ...... 113
    3.2.  Experimental Setup and Characterization of
          Phase-Shift Grating ................................. 117
    3.3.  Formation of Regularly Patterned One
          -Dimensional/Two-Dimensional nc-Si Dots Array ....... 118
    3.4.  Crystallization Mechanism and Self-Organized
          Growth of nc-Si Dots ................................ 120
4.  Nanocrystalline Silicon (nc-Si) Superlattices ............. 122
    4.1.  The Realization of nc-Si Superlattice ............... 122
    4.2.  Three-Dimensional-Ordered nc-Si Structures .......... 125
    4.3.  The Effect of Posttreatments on Crystallization
          in a-Si:H/a-SiNx:H Superlattices .................... 126
5.  Light Emission from nc-Si Films ........................... 131
    5.1.  Visible Photoluminescence from nc-Si/SiNx
          Multilayers ......................................... 131
    5.2.  Visible and Stable Electroluminescence from
          nc-Si/SiNx Multilayers .............................. 133
    5.3.  Comparison of Light Emission between
          Si/SiNx and Si/Si02 Multilayers ..................... 136
6.  Electronic Transport Properties in nc-Si Quantum Dots ..... 140
    6.1.  Conductance Characteristics of Si02/nc-Si QDs /Si02
          Double-Barrier Diode ................................ 140
    6.2.  Size-Dependent Resonant Tunneling and Storing
          of Electrons in nc-Si QDs Floating Gate
          Structures .......................................... 143
    References ................................................ 147

CHAPTER 4.  Epitaxial Growth of Semiconductor Self-Assembled
            Quantum Dots
               H.J. Kim, Z.M. Zhao, B.Shi, J.Liu, Y.H. Xie

1.  Introduction .............................................. 149
2.  Quantum Dot Based Device Applications ..................... 151
3.  Three Growth Modes ........................................ 156
4.  Ge Quantum Dot on Si ...................................... 157
    4.1.    Pyramid to Dome Transition ........................ 157
5.  InAs Quantum Dots on GaAs ................................. 174
    5.1.  Growth Parameters that Strongly Affect
          Dot Formation ....................................... 174
    5.2.  Optical Properties for Optoelectronic
          Applications ........................................ 179
    5.3.  Strain and Dislocations in Quantum Dots ............. 183
    5.4.  Summary ............................................. 185
6.  Other Group Quantum Dots .................................. 185
    6.1.  Self-Organized GaN Quantum Dots on A1N .............. 185
    6.2.  Self-Assembled PbSe Quantum Dots on PbTe(lll)
          Under Tensile Strain ................................ 187
7.  InGaAs Quantum Dots on Si ................................. 188
    7.1.  Introduction ........................................ 188
    7.2.  III-V Quantum Dots on IV Substrates ................. 190
    7.3.  Summary ............................................. 197
8.  Conclusion ................................................ 197
    References ................................................ 199

CHAPTER 5.  Optical and Electrical Transport Properties of Silicon
            Nanodots Embedded in Silicon-Rich  Silicon Nitrides
               Huey-liang Hwang, Zingway Pei, His-lien Hsiao

1.  Introduction .............................................. 206
    1.1.  Electroluminescence ................................. 207
    1.2.  Resonant Tunneling Diode ............................ 207
    1.3.  Nanoflash Memory .................................... 208
2.  Material Growth and Film Compositions ..................... 208
    2.1.  Growth of Si-Rich Silicon Nitride Films ............. 208
    2.2.  Thin Film Characterization .......................... 210
    2.3.  Summary ............................................. 213
3.  Optical Characteristics ................................... 213
    3.1.  Photoluminescence ................................... 213
    3.2.  Electroluminescence ................................. 219
    3.3.  Summary ............................................. 224
4.  Observation of Si nanodots ................................ 225
    4.1.  X-Ray Photoemission Spectroscopy .................... 225
    4.2.  High-Resolution Transmission Electron Microscopy .... 227
    4.3.  Summary ............................................. 228
5.  Electrical Transport Through Si Nanodots .................. 229
    5.1.  Mechanisms of Electrical Transport in
          Dielectric Film ..................................... 229
    5.2.  Device Structure .................................... 234
    5.3.  Transport Characteristics ........................... 236
    5.4.  Current Transport for Samples with Different
          Si Contents ......................................... 240
    5.5.  Characteristics of Si Nanodot-Related Transport ..... 242
    5.6.  Summary ............................................. 246
6.  Transport Dynamics of Silicon Nanodots .................... 246
    6.1.  Introduction ........................................ 246
    6.2.  Experiments ......................................... 246
    6.3.  Nanodots Capacitance ................................ 247
    6.4.  Capacitance-Voltage Characteristics ................. 248
    6.5.  Charging of Carriers ................................ 249
    6.6.  Summary ............................................. 250
7.  Energy Levels in Si Nanodots .............................. 251
    7.1.  Material Parameters ................................. 252
    7.2.  Barrier Height ...................................... 253
    7.3.  Relevance of Band Diagram to Transport .............. 257
    7.4.  Summary ............................................. 259
8.  Conclusions ............................................... 259
    References ................................................ 261

CHAPTER 6.  Modeling of Quantum Dot Self-Assembly
               Christian Lang

1.  Introduction .............................................. 265
2.  Theoretical Models for the Growth of Quantum Dots ......... 267
    2.1.  Models for the Island Nucleation .................... 268
    2.2.  Island Growth ....................................... 270
    2.3.  Self-Limiting Growth ................................ 271
    2.4.  The Quantum Dot Shape ............................... 272
    2.5.  Atomistic Modeling .................................. 273
    2.6.  Models for Buried Quantum Dots ...................... 274
3.  Electronic Properties ..................................... 274
4.  Atomistic Modeling of the Composition Profile ............. 276
    4.1.  An Algorithm for the Atomistic Modeling of
          the "Equilibrium" Alloying Profile .................. 276
    4.2.  The Composition Profile of Pyramid Shaped
          Quantum Dots ........................................ 281
    4.3.  Comparison with the Results of Other Studies ........ 284
5.  Analyzing the Energetics of an Atomistic Model ............ 287
    5.1.  Separating the Different Energy Contributions
          to the Total Energy ................................. 288
    5.2.  Application to the Atomistic Models ................. 291
    5.3.  The Surface Volume Model ............................ 296
    5.4.  Summary ............................................. 299
6.  Conclusions and Future Outlook ............................ 300
    References ................................................ 301

CHAPTER 7.  Stress Relaxation in Lattice-Mismatched Semiconductor
            Overlayers on Patterned Substrates: Atomistic
            Simulation Studies
               Maxim A.Makeev, Anupam Madhukar

1.  Introduction .............................................. 304
2.  Heteroepitaxial Overlayers on Infinite Substrates ......... 306
3.  Critical Overlayers: Pathways for Stress Relaxation ....... 307
    3.1.  Elastic Relaxation .................................. 308
    3.2.  Stress-Induced Instability .......................... 309
    3.3.  Non-Elastic Relaxation .............................. 310
4.  Lattice-Mismatched Overlayers on Nanoscale Mesas:
    An Overview ............................................... 312
    4.1.  InAs/GaAs Systems: Experimental Results ............. 312
    4.2.  Ge/Si Systems: Experimental Results ................. 314
    4.3.  Stress Behavior in the Stripe Mesa
          Systems: Theory ..................................... 315
5.  Simulation Methodology .................................... 316
    5.1.  Interatomic Potential Scheme for Ge/Si Systems ...... 316
    5.2.  Interatomic Potential Scheme for InAs/GaAs
          Systems ............................................. 317
    5.3.  Methodology of Atomically Stress Tensor
          Calculations ........................................ 318
6.  Atomistic Approach to the Problem of Stress Behavior ...... 318
    6.1.  Ge/Si Square Mesa Systems ........................... 318
    6.2.  InAs/GaAs Stripe Mesa Systems ....................... 320
7.  Fundamental Issues of the Stress Behavior in
    Mesa Systems .............................................. 320
    7.1.  Atomic Displacement Fields in Ge/Si ................. 320
    7.2.  Non-Linear Effects in the Stress-Strain
          Relation ............................................ 323
    7.3.  Hydrostatic Stress Behavior in Ge/Si Mesa
          Systems ............................................. 325
    7.4.  Energetics of the Ge Overlayer Covered Si
          Mesa Systems ........................................ 326
    7.5.  Stress Behavior in the Lateral Direction ............ 328
8.  Stress Behavior in the InAs/GaAs Stripe
    Mesa Systems .............................................. 331
9.  Notes on the Phenomenon of Preferential Islanding ......... 332
10. Summary and Conclusions ................................... 334
    References ................................................ 335

CHAPTER 8.  Single and Highly Dense Germanium/Silicon
            Nanostructures
               Alexander Shklyaev, Masakazu Ichikawa

1.  Introduction .............................................. 338
2.  Self-Organization of Ge Layers on Si Surfaces
    at the Stranski-Krastanov Growth Mode ..................... 339
    2.1.  Ge on Si(lll) ....................................... 339
    2.2.  Ge on Si(100) and Si(311) Surfaces .................. 348
    2.3.  Effect of Surface Anisotropy on Ge Growth ........... 349
3.  Formation of Single Nanostructures Using
    Instability of Two-Diemensional Ge Layers ................. 351
    3.1.  Nucleation of Ge Islands Stimulated by
          Electron-Beam Irradiation ........................... 351
    3.2.  Ge Nanostructures Created with the Scanning
          Tunneling Microscope Tip ............................ 351
    3.3.  Ge Islands on Si Windows in Si Oxide Films .......... 357
4.  Single Ge/Si Nanostructures Grown from Si2H6 and GeH4 ..... 360
    4.1.  Si Window Formation in Ultrathin Si02 Films
          on Si Substrates .................................... 360
    4.2.  Selective Growth and Stability of Si
          Nanocrystals on Si(001) Windows ..................... 360
    4.3.  Selective Growth of Ge on Si Windows ................ 362
    4.4.  Selective Growth of Ge/Si and Si/Ge/Si
          Nanoislands ......................................... 362
5.  Ge Islands on Oxidized Si Surfaces ........................ 365
    5.1.  Structure and Density of Ge Islands ................. 365
    5.2.  Growth Mechanism .................................... 368
6.  Morphology of Silicon Layers on Oxidized Si Surfaces ...... 372
    6.1.  Structure and Density of Ultrasmall
          Three-Dimensional Si Islands ........................ 372
    6.2.  Stability of Three-Dimensional Si
          Surface Morphology .................................. 373
    6.3.  Areal Density of Ultrasmall Si Islands .............. 376
7.  Multilayer Structures of Highly Dense Ge Dots ............. 378
    7.1.  Si Growth on Layers of Ge Dots ...................... 378
    7.2.  Photoluminescence in Infrared and
          Visible Ranges ...................................... 381
8.  Conclusion ................................................ 383
    References ................................................ 383
    

CHAPTER 9.  Modeling of Electrostatically Gated Vertical
            Quantum Dots
               J.Adamowski, S.Bednarek, B.Szafran

1.  Introduction .............................................. 390
2.  Structure of Nanodevices .................................. 392
    2.1.  Two-Terminal Quantum Dots ........................... 392
    2.2.  Three-Terminal Quantum Dots ......................... 392
3.  Single-Electron Tunneling Spectroscopy .................... 394
    3.1.  Conditions of Single-Electron Tunneling ............. 395
    3.2.  Single-Electron Capacitance Spectroscopy ............ 396
    3.3.  Single-Electron Transport Spectroscopy .............. 397
4.  Poisson-Schrodinger Problem ............................... 399
    4.1.  Electrostatic Fields in QDs ......................... 400
    4.2.  Boundary Conditions ................................. 403
    4.3.  Numerical Integration of the Poisson Equation ....... 404
    4.4.  Hartree-Fock Method ................................. 406
5.  Quantum Coulomb Blockade .................................. 406
    5.1.  Theoretical Description of Single-Electron
          Tunneling ........................................... 406
    5.2.  Induced-Charge Density Distribution ................. 410
6.  Modeling of Confinement Potentials ........................ 411
    6.1.  Three-Dimensional Profile of the
          Confinement Potential ............................... 411
    6.2.  Lateral Confinement ................................. 411
    6.3.  Parabolic Confinement Potential ..................... 416
7.  Effect of External Magnetic Field ......................... 419
8.  Correlation Effects ....................................... 423
9.  Wigner Molecules .......................................... 426
    9.1.  Wigner Localization ................................. 426
    9.2.  Circular Quantum Dots ............................... 427
    9.3.  Anisotropic Quantum Dots ............................ 433
    9.4.  Exact Broken-Symmetry Solutions ..................... 433
10. Artificial Molecules ...................................... 436
11. Discussion ................................................ 442
12. Applications .............................................. 446
    12.1.  Single-Electron Transistor ......................... 446
    12.2.  Quantum Computation ................................ 446
13.  Conclusions .............................................. 448
    Glossary .................................................. 448
    References ................................................ 449

CHAPTER 10.  Carrier Transport and Gap States in Semiconductor
             Nanostructures
                Diana Nesheva
1.  Introduction .............................................. 453
2.  Carrier Transport in Semiconductor Superlattices .......... 454
    2.1.  Perpendicular Transport ............................. 454
    2.2.  In-Plane Transport and Charge Transfer in SLs ....... 458
    2.3.  Metastable Phenomena ................................ 460
3.  Carrier Transport in Nanocrystalline Layers and
    Composite Films ........................................... 463
    3.1.  Percolation ......................................... 464
    3.2.  Tunneling ........................................... 472
4.  Defect States in Nanoparticles and Ultrathin Layers ....... 478
    4.1.  Binding Energy of Impurity States ................... 478
    4.2.  Defect States in Nanosized Semiconductors ........... 479
5.  Concluding Remarks ........................................ 492
    References ................................................ 492
    Index ..................................................... 499


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:19:26 2019. Размер: 25,267 bytes.
Посещение N 3589 c 27.01.2009