Zanevicius D. h-Geometry: neo-sines in mechanics (Vilnius, 2008). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаZanevicius D. h-Geometry: neo-sines in mechanics. - Vilnius: CountLine, 2008. - 272 p. - ISBN 978-9955-453-89-5
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
Introduction .................................................. VII

Part I

1.  h - Geometry. Neo-Sines: Functions
    with Altitude as an Argument ............................... 13
2.  Triangle ................................................... 37
3.  Ellipse .................................................... 43

Part II

4.  Application of h-Geometry in Mathematics
    and Engineering Science .................................... 49
    4.1.  Mathematical Model to Calculate Coordinates
          of Earth Satellites .................................. 49
          4.1.1.  Two-dimensional model ........................ 50
          4.1.2.  Three-dimensional model ...................... 54
    4.2.  h-Geometry in Finite Element Computation ............. 60
          4.2.1.  Mathematical Model of Finite Element Based
                  on h-Geometry ................................ 62
          4.2.2.  Mathematical Model of a Two-Element System ... 67
    4.3.  Theoretical Mechanics - Statics ...................... 75
    4.4.  Theory of Mechanisms - Kinematics .................... 81
    4.5.  Aerodynamics and Hydrodynamics - Basic
          Characteristics ...................................... 84
    4.6.  Mathematical Models for Artillery Projectile
          Ballistics Based on h-Geometry ....................... 87
    4.7.  Operations with Vectors in h-Geometry ................ 94
          4.7.1.  Composition of Two Vectors ................... 94
          4.7.2.  Subtraction of vectors ....................... 97
    4.8.  Linearization in Physical Process Modelling ......... 100

Part III

5. Astronomical Calculations Based on h-Geometry ............... 99

Part IV. ANNEX. Classical Approach

A1.  Classical Geometry and Trigonometry. Sine:
     Functions where Arguments are Angles Measured
     as the Length of the Arc of Circle ....................... 115
А2.  Triangle ................................................. 119
A3.  Ellipse .................................................. 127
A4.  Classical Geometry and Trigonometry in Mathematics
     and Technical Science .................................... 133
     A4.1.  Basic Methods of Determining Earth
            Satellite Coordinates ............................. 133
            A4.1.1.  Transformation of Coordinates in
                     the Plane ................................ 133
            A4.1.2.  Transformation of Coordinates in
                     Three-Dimensional Space .................. 134
     A4.2.  Basics of the Method of Finite Elements ........... 138
            A4.2.1.  Mathematical Model of a Single Element ... 139
            A4.2.2.  Mathematical Model of a Two-Element
                     System ................................... 143
     A4.3.  Theoretical Mechanics - Statics ................... 146
     A4.4.  Theory of Mechanisms - Kinematics ................. 150
     A4.5.  Aerodynamics and Hydrodynamics -
            Basic Characteristics ............................. 153
     A4.6.  Mathematical Models in Ballistics ................. 156
A5.  Astronomical Calculations Based on Angle Trigonometry .... 169


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:19:24 2019. Размер: 6,717 bytes.
Посещение N 3673 c 20.01.2009