Jha A.R. MEMS and nanotechnology-based sensors and devices (Boca Raton, 2008). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

 
Выставка новых поступлений  |  Поступления иностранных книг в библиотеки СО РАН : 2003 | 2006 |2008
ОбложкаJha A.R. MEMS and nanotechnology-based sensors and devices for communications, medical and aerospace applications. - Boca Raton: Taylor & Francis, 2008. - 401 p. - ISBN 978-0-8493-8069-3
 

Оглавление / Contents
 
Foreword ...................................................... xix

Preface ....................................................... xxi

Author ....................................................... xxix

1    Highlights and Chronological Developmental History of
     MEMS Devices Involving Nanotechnology ...................... 1
1.1  Introduction ............................................... 1
1.2  What Is MEMS? .............................................. 3
     1.2.1 Frequently Used Terms in Nanotechnology .............. 3
     1.2.2 2005 MEMS Industry Overview and Sales Projections
           for MEMS Devices ..................................... 4
1.3  Potential Applications of MEMS Devices in Commercial and
     Space Systems .............................................. 4
     1.3.1 MEMS for Wireless, Base Stations, Satellites, and
           Nanosatellites ....................................... 5
           1.3.1.1 RF-MEMS Amplifier-Switched Filter Bank
                   Capabilities ................................. 6
           1.3.1.2 Passive RF-MEMS Components ................... 7
     1.3.2 RF-MEMS Technology for Base Station Requirements ..... 9
1.4  MEMS Technology for Military Systems Applications ......... 11
     1.4.1 Material Requirements for Fabrication of MEMS
           Devices ............................................. 13
     1.4.2 Types of Nanostructures and Their Properties ........ 14
           1.4.2.1 Surface Plasmon Resonance ................... 16
           1.4.2.2 Ceramics for MEMS Sensors ................... 17
     1.4.3 Fabrication of Critical Elements of a MEMS Device ... 17
     1.4.4 MEMS Technology for Electronic Circuits and
           Detectors for Military Applications ................. 19
           1.4.4.1 Passive MEMS Devices for Commercial,
                   Military, and Space Applications ............ 19
     1.4.5 Nanotechnology for Armors to Provide Protection to
           Soldiers ............................................ 20
     1.4.6 Nanotechnoiogy-Based Biometric Structures to
           Monitor Soldier Health .............................. 20
     1.4.7 Nanomaterials for External Support Muscles and
           Artificial Muscles for Injured Soldiers on
           the Battlefield ..................................... 21
     1.4.8 Robotic Arms for Battlefield Applications ........... 21
     1.4.9 Portable Radar Using MEMS/Nanotechnology for
           Military Applications ............................... 22
1.5  MEMS for Commercial, Industrial, Scientific, and
     Biomedical System Applications ............................ 23
     1.5.1 Nanotubes and Nanotuhe Arrays for Various
           Applications ........................................ 23
     1.5.2 MEMS-Based Video Projection System .................. 24
     1.5.3 Nanotechnology for Photovoltaic Solar Cells and
           3-D Lithium Ion Microbatteries for MEMS Devices ..... 25
1.6  MEMS Technology for Hard-Disk Drives ...................... 26
     1.6.1 MEMS Devices for Thermographic Nondestructive
           Testing ............................................. 27
1.7  MEMS Devices for Uncooled Thermal Imaging Arrays and
     Cooled Focal Planar Arrays for Various Applications ....... 28
1.8  Applications of Nanotechnology in IR and Electro-Optical
     Sensors for Biometric and Security Applications ........... 29
     1.8.1 Nanotechnology-Based Laser Scanning Systems ......... 30
     1.8.2 MEMS-Based Sensors for Detection of Chemical and
           Biological Threats .................................. 31
     1.8.3 Potential Applications of Nanophotonic Sensors and
           Devices ............................................. 31
     1.8.4 MEMS Technology for Photonic Signal Processing and
           Optical Communications .............................. 32
1.9  MEMS Technology for Medical Applications .................. 33
1.10 MEMS Technology for Satellite Communications and Space
     Systems Applications ...................................... 34
1.11 MEMS Devices for Auto Industry Applications ............... 36
1.12 MEMS Technology for Aerospace System Applications ......... 37
1.13 Summary ................................................... 38
References ..................................................... 39

2   Potential Actuation Mechanisms, Their Performance
    Capabilities, and Applications ............................. 41
2.1 Introduction ............................................... 41
2.2 Classification of Actuation Mechanisms ..................... 43
2.3 Structural Requirements and Performance Capabilities of
    Electrostatic Actuation Mechanism .......................... 43
    2.3.1 Electrostatic Actuation Mechanism .................... 43
          2.3.1.1 Cantilever Beam Design Requirements .......... 45
    2.3.2 Electrostatic Force Computation ...................... 48
    2.3.3 Pull-In and Pull-Out Voltage Requirements ............ 54
          2.3.3.1 Pull-In Voltage .............................. 57
          2.3.3.2 Pull-Out Voltage ............................. 62
          2.3.3.3 Electrostatic Microactuator Configurations
                  for Generating Higher Force and Energy
                  Density Capabilities ......................... 65
2.4 Piezoelectric Actuation Mechanism .......................... 66
    2.4.1 Structural Material Requirements for Cantilever
          Beams ................................................ 68
    2.4.2 Threshold Voltage .................................... 69
    2.4.3 Tip Deflection of the Cantilever Beam ................ 71
    2.4.4 Bending Moment of the Cantilever Beam ................ 71
    2.4.5 Contact Force Requirements ........................... 75
2.5 Electrothermal Actuation Mechanism ......................... 78
2.6 Electromagnetic Actuation Mechanism ........................ 83
    2.6.1 Pull-in and Pull-Out Magnetomotive Forces ............ 84
    2.6.2 Actuation Force due to Induced Magnetic Force ........ 85
          2.6.2.1 Parametric Trade-Off Computations ............ 87
2.7 Electrodynamic Actuation Mechanism ......................... 88
2.8 Electrochemical Actuation Mechanism ........................ 91
    2.8.1 Classification and Major Benefits of CNT ............. 92
    2.8.2 MWCNT Arrays and Electrochemical Actuator
          Performance .......................................... 92
    2.8.3 Fabrication and Material Requirements for
          the Actuator ......................................... 92
2.9 Summary .................................................... 94
References ..................................................... 95

3   Latest and Unique Methods for Actuation .................... 97
3.1 Introduction ............................................... 97
3.2 Electrostatic Rotary Microactuator with Improved Shaped
    Design ..................................................... 98
    3.2.1 Performance Limitation of Conventional
          Parallel-Plate Electrodes ............................ 99
    3.2.2 ESRM with Tilted Configuration ...................... 100
    3.2.3 Requirements for Optimum Shaped Electrodes .......... 100
    3.2.4 Force Generation Computations of Rotary Actuator
          with Conventional and Tilted Configurations ......... 101
          3.2.4.1 Actuation Force Computation for
                  Conventional Configuration .................. 102
          3.2.4.2 Force Generation Computation for Tilted
                  Configuration ............................... 102
    3.2.5 Torque-Generating Capability of the Rotary
          Actuator with Tilted Configuration .................. 109
    3.2.6 Optimum Curve Shape of the Electrodes ............... 110
          3.2.6.1 Potential Electrode Shapes .................. 110
          3.2.6.2 Normalized Torque as a Function of
                  Normalized Angular Displacement ............. 111
          3.2.6.3 Parametric Requirements for Optimum Rotary
                  Microactuator ............................... 115
3.3 Unique Microactuator Design for HHD Applications .......... 118
    3.3.1 Introduction ........................................ 118
    3.3.2 Benefits and Design Aspects of a Dual-Stage
          Servomechanism (or MEMS Piggyback Actuator) ......... 119
          3.3.2.1 Architecture of a Third-Generation
                  Microactuator ............................... 120
          3.3.2.2 Performance Capabilities of the MEMS
                  Piggyback Microactuator ..................... 120
    3.3.3 Force Generation Capability, Displacement Limit,
          and Mechanical Resonance Frequency Range ............ 122
          3.3.3.1 Electrostatic Force Calculation ............. 123
          3.3.3.2 Mechanical Resonance Frequency
                  Calculation ................................. 123
          3.3.3.3 Electrode Mass Computation .................. 125
          3.3.3.4 Displacement (x) as a Function of Gap Size
                  (g) and Number of Electrodes (N) ............ 126
3.4 Capabilities of Vertical Comb Array Microactuator ......... 127
    3.4.1 Structural Requirements and Critical Design
          Aspects of VGA Actuator ............................. 129
    3.4.2 VCAM Performance Comparison with Other Actuators .... 130
    3.4.3 Potential Comb Finger Shapes ........................ 130
3.5 Capabilities of Bent-Beam Electrothermal Actuators ........ 133
    3.5.1 Performance Capabilities and Design Configuration
          of Bent-Beam Electrothermal Actuators ............... 133
    3.5.2 Brief Description of the BBET Structure ............. 134
    3.5.3 Input Power Requirements for BBET Actuators ......... 139
3.6 Summary ................................................... 140
References .................................................... 140

4   Packaging, Processing, and Material Requirements for
    MEMS Devices .............................................. 141
4.1 Introduction .............................................. 141
4.2 Packaging and Fabrication Materials ....................... 142
    4.2.1 Packaging Material Requirements and Packaging
          Processes ........................................... 144
          4.2.1.1 Sealing Methods ............................. 145
    4.2.2 Effects of Temperature on Packaging ................. 146
    4.2.3 Effect of Pressure on Packaging and Device
          Function ............................................ 146
    4.2.4 Fabrication Aspects for MEMS Devices Incorporating
          Nanotechnology ...................................... 147
          4.2.4.1 Thin-Film Capping Requirements for MEMS
                  Devices ..................................... 149
          4.2.4.2 Chip Capping and Bonding Requirements ....... 149
          4.2.4.3 Transition and Feedthrough Requirements
                  for MEMS Devices ............................ 150
          4.2.4.4 Material Requirements for Piezoelectric
                  Actuators ................................... 151
          4.2.4.5 Material Requirements for Structural
                  Support, Electrodes, and Contact Pads ....... 153
          4.2.4.6 Requirements for Electrodeposition and
                  Electroplating Materials .................... 153
4.3 Impact of Environments on MEMS Performance ................ 154
    4.3.1 Impact of Temperature Variations on Coefficient of
          Thermal Expansion ................................... 155
    4.3.2 Effects of Temperature on Thermal Conductivity of
          Materials Used in MEMS .............................. 156
    4.3.3 Special Alloys Best Suited for MEMS Applications .... 159
          4.3.3.1 Benefits of CE-Alloys in RF/Microwave MEMS
                  Packaging ................................... 160
          4.3.3.2 Benefits of CE-Alloys for Thermal Backing
                  Plates ...................................... 160
          4.3.3.3 Benefits of CE-Alloys in Integrated
                  Circuit Assemblies .......................... 161
    4.3.4 Bulk Materials Best Suited for Mechanical Design
          of MEMS Devices ..................................... 161
4.4 Material Requirements for Electrostatic Actuator
    Components ................................................ 162
    4.4.1 Material Properties for MEMS Membranes .............. 163
    4.4.2 Sacrificial Material Requirements for MEMS
          Devices ............................................. 163
    4.4.3 Three-Dimensional Freely Movable Mechanical
          Structure Requirements .............................. 164
4.5 Substrate Materials Best Suited for Various MEMS
    Devices ................................................... 164
    4.5.1 Soft Dielectric Substrates .......................... 165
    4.5.2 Hard Dielectric Substrates .......................... 165
    4.5.3 Electrical Properties of Soft and Hard Substrates ... 167
    4.5.4 Glass-Ceramic Hybrid Substrate for MEMS ............. 170
    4.5.5 Para-Electronic Ceramic Substrates for MEMS
          Applications ........................................ 170
    4.5.6 Insulation and Passivation Layer Materials .......... 171
    4.5.7 Material Requirements for MEMS in Aerospace
          Systems ............................................. 172
4.6 Summary ................................................... 173
References .................................................... 174

5    RF-MEMS Switches Operating at Microwave and mm-Wave
     Frequencies .............................................. 175
5.1  Introduction ............................................. 175
5.2  Operating Principle and Critical Performance Parameters
     of MEMS Devices .......................................... 177
     5.2.1 Critical Performance Parameters Affected by
           Environments ....................................... 177
     5.2.2 Two Distinct Configurations of RF-MEMS Switches
           and Design Aspects ................................. 178
5.3  Performance Capabilities and Design Aspects of RF-MEMS
     Shunt Switches ........................................... 180
     5.3.1 Electrostatic Actuation Requirements for
           the Shunt Switch Using Membranes ................... 181
           5.3.1.1 Sample Calculations for Spring Constant
                   and Pull-in Voltage ........................ 183
     5.3.2 Computer Modeling Parameters for MEMS Shunt
           Switch ............................................. 183
           5.3.2.1 Computation of Upstate and Downstate
                   Capacitances ............................... 185
           5.3.2.2 Current Distribution and Series
                   Resistance of the MEMS Bridge Structure .... 186
           5.3.2.3 Estimates of Switch Inductance and
                   Capacitance Parameters ..................... 187
           5.3.2.4 Insertion Loss in a MEMS Switch ............ 188
           5.3.2.5 Estimation of Series Resistance of
                   the Bridge and Impact of Switch
                   Inductance on the Isolation ................ 189
           5.3.2.6 Typical Upstate and Downstate Insertion
                   Losses in a MEMS Shunt Switch .............. 191
5.4  MEMS Shunt Switch Configuration for High Isolation ....... 192
     5.4.1 Tuned Two-Bridge Design and Its Performance
           Capabilities ....................................... 193
     5.4.2 Design Aspects and Performance Capabilities of
           Four-Bridge Cross Switch ........................... 194
           5.4.2.1 High Isolation with Inductively Tuned
                   MEMS Switches .............................. 196
     5.4.3 MEMS Shunt Switches for Higher mm-Wave
           Frequencies ........................................ 197
           5.4.3.1 W-Band MEMS Shunt-Capacitive Switch ........ 197
           5.4.3.2 Switching Speed of MEMS Shunt Switches ..... 199
5.5  MEMS Switches Using Metallic Membranes ................... 201
     5.5.1 Introduction ....................................... 201
     5.5.2 Operating Principle and Design Aspects of
           Capacitive Membrane Switches ....................... 201
     5.5.3 RF Performance Parameters of Membrane Shunt
           Switch ............................................. 209
5.6  RF-MEMS Switches with Low-Actuation Voltage .............. 210
     5.6.1 Introduction ....................................... 210
     5.6.2 Fabrication Process Steps and Critical Elements
           of the Switch ...................................... 211
     5.6.3 Reliability Problems and Failure Mechanisms in
            the Shunt MEMS Switches ........................... 211
     5.6.4 RF Performance Capabilities ........................ 213
5.7  RF-MEMS Series Switches .................................. 213
     5.7.1 Introduction ....................................... 213
     5.7.2 Description and Design Aspects of the MEMS Series
           Switch ............................................. 213
     5.7.3 Fabrication Process Steps and Switch Operational
           Requirements ....................................... 215
     5.7.4 RF Design Aspects .................................. 217
     5.7.5 RF Performance Parameters of the Switch ............ 217
5.8  Effects of Packaging Environments on the Functionality
     and Reliability of the MEMS Switches ..................... 218
     5.8.1 Introduction ....................................... 218
     5.8.2 Impact of Temperature on the Functionality and
           Reliability ........................................ 218
     5.8.3 Impact of Pressure on Switch Reliability and RF
           Performance ........................................ 219
     5.8.4 Effects of Zero-Level Packaging on MEMS Switch
           Performance ........................................ 220
5.9  Packaging Material Requirements for MEMS Switches ........ 220
     5.9.1 Properties and Applications of CE-Alloys for
           RF-MEMS Devices and Sensors ........................ 221
5.10 Summary .................................................. 222
References .................................................... 223

6    RF/Microwave MEMS Phase Shifter .......................... 225
6.1  Introduction ............................................. 225
6.2  Properties and Parameters of CPW Transmission Lines ...... 226
     6.2.1  Computations of CPW Line Parameters ............... 227
6.3  Distributed MEMS Transmission-Line Phase Shifters ........ 232
     6.3.1  Introduction ...................................... 232
     6.3.2  Computations of DMTL Parameters ................... 233
            6.3.2.1 Bragg Frequency Computations .............. 234
            6.3.2.2 Computations of Bridge Impedance (ZB)
                    and Phase Velocity (Vp) ................... 236
            6.3.2.3 Insertion Loss in the DMTL Section ........ 238
6.4  Design Aspects and DMTL Parameter Requirements for TTD
     Phase Shifters Operating at mm-Wave Frequencies .......... 239
     6.4.1  Computations of Unloaded Line Impedance (Zul),
            Line Inductance, and Capacitance per Unit Length
            of the Transmission Line .......................... 240
     6.4.2  Digital MEMS Distributed X-Band Phase Shifter ..... 241
     6.4.3  Design Procedure for mm-Wave DMTL Phase
            Shifters .......................................... 242
     6.4.4  Expression for Phase Shift ........................ 244
     6.4.5  Optimized Design Parameters for a W-Band DMTL
            Phase Shifter ..................................... 245
6.5  Two-Bit MEMS DMTL Phase Shifter Designs .................. 247
     6.5.1  Design Parameters and Performance Capabilities
            of 2-Bit, X-Band Phase Shifter .................... 248
     6.5.2  Insertion Loss in a DMTL Phase Shifter ............ 249
     6.5.3  Digital Version of the DMTL Phase Shifter with
            360° Phase Capability ............................. 250
            6.5.3.1 Design Parameter Requirements for
                    Digital, 360° Phase Shifter ............... 250
            6.5.3.2 Insertion Loss Contributed by MIM
                    Capacitors and Its Effect on CPW Line
                    Loss ...................................... 252
            6.5.3.3 Phase Noise Contribution from DMTL Phase
                    Shifters .................................. 253
6.6  Multi-Bit Digital Phase Shifter Operating at K and Ka
     Frequencies .............................................. 254
     6.6.1  Introduction ...................................... 254
     6.6.2  Design Aspects and Critical Elements of the MDDM
            Phase Shifter ..................................... 255
6.7  Ultrawide Band Four-Bit True-Time-Delay MEMS Phase
     Shifter Operating over dc-40 GHz ......................... 257
     6.7.1  Introduction ...................................... 257
     6.7.2  Design Requirements and Parameters to Meet
            Specific Performance for a Wideband 4-Bit, TTD
            Phase Shifter ..................................... 257
     6.7.3  Performance Parameter of the Device ............... 258
6.8  Two-Bit, V-Band Reflection-Type MEMS Phase Shifter ....... 259
     6.8.1  Introduction ...................................... 259
     6.8.2  Design Aspects and Performance Capabilities ....... 260
6.9  Three-Bit, Ultralow Loss Distributed Phase Shifter
     Operating over K-Band Frequencies ........................ 264
     6.9.1  Introduction ...................................... 264
     6.9.2  Design Aspects, Operating Principle, and
            Description of Critical Elements .................. 264
6.10 Three-Bit, V-Band, Reflection-Type Distributed MEMS
     Phase Shifter ............................................ 266
     6.10.1 Design Aspects and Critical Performance
            Parameters ........................................ 266
     6.10.2 RF Performance of the 3 dB CPW Coupler and
            the 3-Bit, V-Band Phase Shifter ................... 267
     6.10.3 Maximum Phase Shift Available from a Multibridge
            DMTL Phase Shifter ................................ 267
6.11 Summary .................................................. 269
References .................................................... 270

7   Applications of Micropumps and Microfluidics .............. 271
7.1 Introduction .............................................. 271
7.2 Potential Applications of Micropumps ...................... 272
7.3 Design Aspects of Fixed-Valve Micropumps .................. 272
    7.3.1 Models Most Suited for Performance Optimization ..... 273
    7.3.2 Reliable Modeling Approach for MPs with Fixed
          Valves .............................................. 273
          7.3.2.1 Electrical and Mechanical Parameters for
                  Low-Order Model ............................. 274
          7.3.2.2 Mathematical Expression for Critical Pump
                  Parameters .................................. 275
          7.3.2.3 Chamber Parameters .......................... 276
          7.3.2.4 Fluidic Valve Parameters and Their Typical
                  Values ...................................... 277
          7.3.2.5 Description of Micropumps with
                  Straight-Channel Configurations ............. 279
          7.3.2.6 Impact of Viscosity and Membrane
                  Parameters on Valve Performance ............. 281
7.4 Dynamic Modeling for Piezoelectric Valve-Free
    Micropumps ................................................ 282
    7.4.1 Introduction ........................................ 282
    7.4.2 Modeling for the Piezoelectric Valve-Free Pump ...... 282
    7.4.3 Natural Frequency of the Micropump System ........... 285
    7.4.4 Pump Performance in Terms of Critical Parameters .... 287
7.5 Design Aspects and Performance Capabilities of
    an Electrohydrodynamic Ion-Drag Micropump ................. 289
    7.5.1 Introduction ........................................ 289
    7.5.2 Design Concepts and Critical Parameters of an EHD
          Pump ................................................ 290
    7.5.3 Benefits of EHD Ion-Drag Pumps ...................... 292
    7.5.4 Critical Design Aspects of Ion-Drag Pump and
          Electrode Ceometries ................................ 294
7.6 Capabilities of a Ferrofluidic Magnetic Micropump ......... 295
    7.6.1 Introduction ........................................ 295
    7.6.2 Design Aspects and Critical Performance
          Parameters .......................................... 295
    7.6.3 Operational Requirements for Optimum Pump
          Performance ......................................... 298
7.7 Summary ................................................... 300
References .................................................... 301

8    Miscellaneous MEMS/Nanotechnology Devices and Sensors
     for Commercial and Military Applications ................. 303
8.1  Introduction ............................................. 303
8.2  MEMS Varactors or Tunable Capacitors ..................... 304
     8.2.1  Benefits and Shortcomings of MEMS Varactors ....... 307
     8.2.2  MEMS Varactor Design Aspects and Fabrication
            Requirements ...................................... 307
     8.2.3  Effects of Nonlinearity Generated by MEMS
            Capacitors ........................................ 308
8.3  Micromechanical Resonators ............................... 311
     8.3.1  Introduction ...................................... 311
     8.3.2  Types of Micro-Resonators and Their Potential
            Applications ...................................... 311
     8.3.3  Free-Free Beam High-Q Micro-Resonators ............ 315
            8.3.3.1 Structural Design Aspects and
                    Requirements of FFB Micro-Resonators ...... 315
            8.3.3.2 Operational Requirements and Parameters
                    FFB Micro-Resonator ....................... 318
     8.3.4  Folded-Beam Comb-Transducer Micro-Resonator ....... 320
     8.3.5  Clamped-Clamped Beam Micro-Resonator .............. 321
            8.3.5.1 Effects of Environmental Factors on
                    Micro-Resonator Performance ............... 322
            8.3.5.2 Performance Summary of Various
                    Micromechanical Resonators ................ 323
8.4  Micromechanical Filters .................................. 324
     8.4.1  Micromechanical Filter Design Aspects ............. 324
     8.4.2  Critical Elements and Performance Parameters of
            Micromechanical Filters ........................... 326
     8.4.3  Performance Summary of a Two-Resonator
            High-Frequency Filter ............................. 327
8.5  Transceivers ............................................. 329
     8.5.1  Introduction ...................................... 329
     8.5.2  Transceiver Performance Improvement from
            Integration of Micromechanical Resonator
            Technology ........................................ 329
8.6  Oscillator Using Micromechanical Resonator Technology .... 330
     8.6.1  Design Concepts and Performance Parameters of
            the 16.5 kHz Oscillator ........................... 330
8.7  V-Band MEMS-Based Tunable Band-Pass Filters .............. 331
     8.7.1  Introduction ...................................... 331
     8.7.2  Design Parameters and Fabrications Techniques
            for a V-Band MEMS-Filter .......................... 332
     8.7.3  Performance Parameters of a V-Band, Two-Stage
            MEMS Tunable Filter ............................... 333
8.8  MEMS-Based Strain Sensors ................................ 333
     8.8.1  Introduction ...................................... 333
     8.8.2  Design Aspects and Requirements for Strain
            Sensor Installation and Calibration ............... 333
     8.8.3  Gauge Factor Computation .......................... 336
8.9  MEMS Interferometric Accelerometers ...................... 338
     8.9.1  Introduction ...................................... 338
     8.9.2  Design Aspects and Requirements for
            an Interferometric Accelerometer .................. 338
8.10 MEMS-Based Micro-Heat Pipes .............................. 341
     8.10.1 Introduction ...................................... 341
     8.10.2 Design Aspects and Critical Parameters of
            Micro-Heat Pipes .................................. 341
8.11 MEMS-Based Thin-Film Microbatteries ...................... 344
     8.11.1 Introduction ...................................... 344
     8.11.2 Critical Design Aspects and Requirements for
            the 3-D, Thin-Film Microbatteries ................. 344
     8.11.3 Projected Performance Parameters of a 3-D,
            Thin-Film Microbattery ............................ 349
     8.11.4 Unique Features and Potential Applications of
            Microbatteries .................................... 350
8.12 Summary .................................................. 350
References .................................................... 351

9    Materials for MEMS and Nanotechnology-Based Sensors and
     Devices .................................................. 353
9.1  Introduction ............................................. 353
9.2  Photonic Crystals ........................................ 354
     9.2.1 Photonic Bandgap Fiber ............................. 354
     9.2.2 Core Material Requirements for PCF ................. 355
     9.2.3 Unique Properties of PCFs and Their Potential
           Applications ....................................... 356
9.3  Nanotechnology-Based Materials and Applications .......... 357
     9.3.1 Nanocrystals ....................................... 358
     9.3.2 Photonic Nanocrystals .............................. 358
     9.3.3 Nanowires and Rods and Their Applications .......... 359
           9.3.3.1 Zinc Oxide Nanowires ....................... 359
           9.3.3.2 Silicon Nanowires .......................... 359
           9.3.3.3 Zinc Selenium Nanowires .................... 360
           9.3.3.4 Zinc Phosphide Nanowires ................... 361
           9.3.3.5 Cadmium Sulfide Nanowires .................. 361
           9.3.3.6 Iron-Gallium Nanowires ..................... 362
9.4  Nanoparticles ............................................ 362
9.5  Quantum Dots ............................................. 363
     9.5.1 Applications of Quantum Dots ....................... 364
     9.5.2 Unique Security Aspects of Quantum Dots ............ 364
     9.5.3 Lead Sulfide Quantum Dots with Nonlinear
           Properties ......................................... 365
9.6  Nanobubbles .............................................. 365
     9.6.1 Applications of Nanobubbles ........................ 366
9.7  MEMS Deformable Micro-Mirrors ............................ 366
     9.7.1 Applications of MEMS Deformable Mirrors ............ 367
9.8  Carbon Nanombes and CNT Arrays ........................... 368
     9.8.1 Potential Applications of CNT Arrays ............... 368
           9.8.1.1 Nanostructures/Nanocomposites Using CNT
                   Arrays ..................................... 368
           9.8.1.2 CNTs as Field Emitters or Electron
                   Sources .................................... 370
           9.8.1.3 CNT Technology for Biosensor Chemical and
                   Environmental Applications ................. 370
           9.8.1.4 Nanotubc Arrays for Electrochemical
                   Actuators .................................. 371
           9.8.1.5 Nanotube Probes and Dispensing Devices ..... 372
9.9  Nanotechnology- and MEMS-Based Sensors and Devices for
     Specific Applications .................................... 372
     9.9.1 Acoustic Sensors Using Nanotechnology for
           Underwater Detection Applications .................. 373
     9.9.2 MEMS Technology for mm-Wave Microstrip Patch
           Antennas ........................................... 373
     9.9.3 Carbon Nanotube-Based Transistors and Solar
           Cells .............................................. 374
     9.9.4 Nanotechnology-Based Sensors for Weapon Health
           and Battlefield Environmental Monitoring
           Applications ....................................... 374
           9.9.4.1 Nanotechnology-Based Sensors to Monitor
                   Weapon Health .............................. 374
           9.9.4.2 Nanotechnology-Based Sensors to Monitor
                   Battlefield Environmental Conditions ....... 376
     9.9.5 MEMS-Based Gyros and Applications .................. 376
     9.9.6 MEMS-Based Accelerometers and Applications ......... 379
     9.9.7 Material Requirements and Properties for MEMS-
           and NT-Based Sensors and Devices ................... 379
           9.9.7.1 Introduction ............................... 379
           9.9.7.2 Material Requirements for Fabrication of
                   MEMS Sensors and Devices ................... 380
           9.9.7.3 Properties of Materials Required for
                   Mechanical Design of MEMS Devices .......... 380
           9.9.7.4 Properties of Materials Required for
                   Thermal Design of MEMS Devices ............. 381
9.10 Summary .................................................. 382
References .................................................... 383

Index ......................................................... 385


 
Выставка новых поступлений  |  Поступления иностранных книг в библиотеки СО РАН : 2003 | 2006 |2008
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  Пожелания и письма: branch@gpntbsib.ru
© 1997-2024 Отделение ГПНТБ СО РАН (Новосибирск)
Статистика доступов: архив | текущая статистика
 

Документ изменен: Wed Feb 27 14:52:52 2019. Размер: 38,039 bytes.
Посещение N 1498 c 26.04.2010