Fultz B. Transmission electron microscopy and diffractometry of materials (Berlin, 2002) - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

 
Выставка новых поступлений  |  Поступления иностранных книг в библиотеки СО РАН : 2003 | 2006 |2008
ОбложкаFultz B. Transmission electron microscopy and diffractometry of materials / Fultz B., Howe J. - 2nd ed. - Berlin; New York: Springer, 2002. - 748 p. - ISBN 3-540-43764-9
 

Оглавление / Contents
 
1.  Diffraction and the X-Ray Powder Difiractometer ............. 1

    1.1.  Diffraction ........................................... 1
          1.1.1.  Introduction to Diffraction ................... 1
          1.1.2.  Bragg's Law ................................... 3
          1.1.3.  Strain Effects ................................ 6
          1.1.4.  Size Effects .................................. 7
          1.1.5.  A Symmetry Consideration ...................... 8
          1.1.6.  Experimental Methods .......................... 9
    1.2.  The Creation of X-Rays ............................... 13
          1.2.1.  Bremsstrahhmg ................................ 13
          1.2.2.  Characteristic Radiation ..................... 16
          1.2.3.  Synchrotron Radiation ........................ 20
    1.3.  The X-Ray Powder Diffractometer ...................... 23
          1.3.1.  Practice of X-Ray Generation ................. 23
          1.3.2.  Goniometer for Powder Diffraction ............ 25
          1.3.3.  Monochromators and Filters ................... 27
    1.4.  X-Ray Detectors for XRD and ТЕМ ...................... 29
          1.4.1.  Detector Principles .......................... 29
          1.4.2.  Position-Sensitive Detectors ................. 34
          1.4.3.  Charge Sensitive Preamplifier ................ 35
          1.4.4.  Other Electronics ............................ 35
    1.5.  Experimental X-Ray Powder Diffraction Data ........... 37
          1.5.1.  * Intensities of Powder Diffraction Peaks .... 37
          1.5.2.  Phase Fraction Measurement ................... 45
          1.5.3.  Lattice Parameter Measurement ................ 50
          1.5.4.  * Refinement Methods for Powder Diffraction
                  Data ......................................... 52
          1.5.5.  * Pair Distribution Function Analysis ........ 55
          Further Reading ...................................... 56
          Problems ............................................. 57

2.  The ТЕМ and its Optics ..................................... 63
    
    2.1.  Introduction to the Transmission Electron
          Microscope ........................................... 63
    2.2.  Working with Lenses and Ray Diagrams ................. 67
          2.2.1  Single Lenses ................................. 67
          2.2.2  Multi-Lens Systems ............................ 70
    2.3.  Modes of Operation of а ТЕМ .......................... 73
          2.3.1.  Conventional Modes ........................... 73
          2.3.2.  Convergent-Beam Electron Diffraction ......... 83
          2.3.3.  High-Resolution Imaging ...................... 84
    2.4.  Real Lens Systems .................................... 89
          2.4.1.  Illumination Lens Systems .................... 89
          2.4.2.  Imaging Lens Systems ......................... 93
    2.5.  Glass Lenses ......................................... 94
          2.5.1.  Interfaces ................................... 94
          2.5.2.  Lenses and Rays .............................. 95
          2.5.3.  Lenses and Phase Shifts ...................... 98
    2.6.  Magnetic Lenses ..................................... 100
    2.7.  Lens Aberrations and Other Defects .................. 105
          2.7.1.  Spherical Aberration ........................ 105
          2.7.2.  Chromatic Aberration ........................ 106
          2.7.3.  Diffraction ................................. 107
          2.7.4.  Astigmatism ................................. 107
          2.7.5.  Gun Brightness .............................. 111
    2.8.  Resolution .......................................... 113
          Further Reading ..................................... 115
          Problems ............................................ 116

3.   Scattering ............................................... 123
    3.1.  Coherence and Incoherence ........................... 123
          3.1.1.  Phase and Energy ............................ 123
          3.1.2.  Wave Amplitudes and Cross-Sections .......... 126
    3.2.  X-Ray Scattering .................................... 130
          3.2.1.  Electrodynamics of X-Ray Scattering ......... 130
          3.2.2.  * Inelastic Compton Scattering .............. 135
          3.2.3.  X-Ray Mass Attenuation Coefficients ......... 136
    3.3.  Coherent Elastic Scattering ......................... 138
          3.3.1.  fig.1 Born Approximation for Electrons .......... 138
          3.3.2.  Atomic Form Factors  Physical Picture ....... 143
          3.3.3.  fig.1 Scattering of Electrons by Model
                  Potentials .................................. 146
          3.3.4.  fig.1 * Atomic Form Factors - General
                  Formulation ................................. 150
    3.4.  * Nuclear Scattering ................................ 155
          3.4.1.  Properties of Neutrons ...................... 156
          3.4.2.  * Inelastic Neutron Scattering .............. 158
          3.4.3.  * Mössbauer Scattering ...................... 161
          Further Reading ..................................... 164
          Problems ............................................ 164

4.  Inelastic Electron Scattering and Spectroscopy ............ 167

    4.1.  Inelastic Electron Scattering ....................... 167
    4.2.  Electron Energy-Loss Spectrometry (EELS) ............ 169
          4.2.1.  Instrumentation ............................. 169
          4.2.2.  General Features of EELS Spectra ............ 170
          4.2.3.  * Fine Structure ............................ 172
    4.3.  Plasmon Excitations ................................. 177
          4.3.1.  Plasmon Principles .......................... 177
          4.3.2.  * Plasmons and Specimen Thickness ........... 179
    4.4.  Core Excitations .................................... 181
          4.4.1.  Scattering Angles and Energies -
                  Qualitative ................................. 182
          4.4.2.  fig.1 Inelastic Form Factor ..................... 184
          4.4.3.  fig.1 * Double-Differential Cross-Section,
                  А2аm/афАЕ ................................... 188
          4.4.4.  * Scattering Angles and Energies -
                  Quantitative ................................ 190
          4.4.5.  fig.1 * Differential Cross-Section, dam/dE ...... 192
          4.4.6.  fig.1 Partial and Total Cross-Sections, <rm ..... 193
          4.4.7.  Quantification of EELS Core Edges ........... 196
    4.5.  * Energy-Filtered ТЕМ Imaging (EFTEM) ............... 198
          4.5.1.  * Energy Filters ............................ 199
          4.5.2.  * Chemical Mapping with Energy-Filtered
                  Images ...................................... 200
          4.5.3.  Chemical Analysis with High Spatial
                  Resolution .................................. 202
    4.6.  Energy Dispersive X-Ray Spectrometry (EDS) .......... 203
          4.6.1.  Electron Trajectories Through Materials ..... 203
          4.6.2.  Fluorescence Yield .......................... 208
          4.6.3.  EDS Instrumentation Considerations .......... 210
          4.6.4.  Thin-Film Approximation ..................... 213
          4.6.5.  * ZAF Correction ............................ 216
          4.6.6.  Limits of Microanalysis ..................... 218
          Further Reading ..................................... 220
          Problems ............................................ 220

5.  Diffraction from Crystals ................................. 225
    5.1.  Sums of Wavelets from Atoms ......................... 225
          5.1.1.  Electron Diffraction from a Material ........ 226
          5.1.2.  Wave Diffraction from a Material ............ 228
    5.2.  The Reciprocal Lattice and the Laue Condition ....... 232
          5.2.1.  Diffraction from a Simple Lattice ........... 232
          5.2.2.  Reciprocal Lattice .......................... 233
          5.2.3.  Laue Condition .............................. 235
          5.2.4.  Equivalence of the Laue Condition and
                  Bragg's Law ................................. 235
          5.2.5.  Reciprocal Lattices of Cubic Crystals ....... 236
    5.3.  Diffraction from a Lattice with a Basis ............. 237
          5.3.1.  Structure Factor and Shape Factor ........... 237
          5.3.2.  Structure Factor Rules ...................... 239
          5.3.3.  Symmetry Operations and Forbidden
                  Diffractions ................................ 244
          5.3.4  Superlattice Diffractions .................... 245
    5.4.  Crystal Shape Factor ................................ 249
          5.4.1.  Shape Factor of Rectangular Prism ........... 249
          5.4.2.  Other Shape Factors ......................... 253
          5.4.3.  Small Particles in a Large Matrix ........... 254
    5.5.  Deviation Vector (Deviation Parameter) .............. 258
    5.6.  Ewald Sphere ........................................ 259
          5.6.1.  Ewald Sphere Construction ................... 259
          5.6.2.  Ewald Sphere and Bragg's Law ................ 261
          5.6.3.  Tilting Specimens and Tilting Electron
                  Beams ....................................... 261
    5.7.  Laue Zones .......................................... 263
    5.8.  * Effects of Curvature of the Ewald Sphere .......... 266
          Further Reading ..................................... 267
          Problems ............................................ 268

6.  Electron Diffraction and Crystallography .................. 275
    6.1.  Indexing Diffraction Patterns ....................... 275
          6.1.1.  Issues in Indexing .......................... 276
          6.1.2.  Method 1 - Start with Zone Axis ............. 278
          6.1.3.  Method 2 - Start with Diffraction Spots ..... 281
    6.2.  Stereographic Projections and Their Manipulation  284
          6.2.1.  Construction of a Stereographic
                  Projection .................................. 284
          6.2.2.  Relationship Between Stereographic
                  Projections and Electron Diffraction
                  Patterns .................................... 286
          6.2.3.  Manipulations of Stereographic
                  Projections ................................. 286
    6.3.  Kikuchi Lines and Specimen Orientation .............. 292
          6.3.1.  Origin of Kikuchi Lines ..................... 292
          6.3.2.  Indexing Kikuchi Lines ...................... 296
          6.3.3.  Specimen Orientation and Deviation
                  Parameter ................................... 298
          6.3.4.  The Sign of s ............................... 301
          6.3.5.  Kikuchi Maps ................................ 301
    6.4.  Double Diffraction .................................. 304
          6.4.1.  Occurrence of Forbidden Diffractions ........ 304
          6.4.2.  Interactions Between Crystallites ........... 305
    6.5.  * Convergent-Beam Electron Diffraction .............. 306
          6.5.1.  Convergence Angle of Incident Electron
                  Beam ........................................ 308
          6.5.2.  Determination of Sample Thickness ........... 309
          6.5.3.  Measurements of Unit Cell Parameters ........ 311
          6.5.4.  fig.1 * Determination of Point Groups ........... 316
          6.5.5.  fig.1 * Determination of Space Groups ........... 327
    6.6.  Further Reading ..................................... 332
          Problems ............................................ 332

7.  Diffraction Contrast in ТЕМ Images ........................ 339
    7.1.  Contrast in ТЕМ Images .............................. 339
    7.2.  A Review of Structure and Shape Factors ............. 341
    7.3.  Extinction Distance ................................. 343
    7.4.  The Phase-Amplitude Diagram ......................... 346
    7.5.  Fringes from Sample Thickness Variations ............ 348
          7.5.1.  Thickness and Phase-Amplitude Diagrams ...... 348
          7.5.2.  Thickness Contours in ТЕМ Images ............ 349
    7.6.  Bend Contours in ТЕМ Images ......................... 354
    7.7.  Diffraction Contrast from Strain Fields ............. 357
    7.8.  Dislocations and Burgers Vector Determination ....... 360
          7.8.1.  Diffraction Contrast from Dislocation
                  Strain Fields ............................... 360
          7.8.2.  The g·b for Null Contrast ................... 363
          7.8.3.  Image Position and Dislocation Pairs or
                  Loops ....................................... 368
    7.9.  Semi-Quantitative Diffraction Contrast from
          Dislocations ........................................ 370
    7.10. Weak-Beam Dark-Field (WBDF) Imaging of
          Dislocations ........................................ 378
          7.10.1. Procedure to Make a WBDF Image .............. 379
          7.10.2. Diffraction Condition for a WBDF Image ...... 380
          7.10.3. Analysis of WBDF Images ..................... 381
    7.11. Fringes at Interfaces ............................... 385
          7.11.1. Phase Shifts of Electron Wavelets Across
                  Interfaces .................................. 385
          7.11.2. Moire Fringes ............................... 388
    7.12. Diffraction Contrast from Stacking Faults ........... 392
          7.12.1. Kinematical Treatment ....................... 392
          7.12.2. Results from Dynamical Theory ............... 398
          7.12.3. Determination of the Intrinsic or
                  Extrinsic Nature of Stacking Faults ......... 400
          7.12.4. Partial Dislocations Bounding the Fault ..... 400
          7.12.5. An Example of a Stacking Fault Analysis ..... 401
          7.12.6. Sets of Stacking Faults in ТЕМ Images ....... 403
          7.12.7. Related Fringe Contrast ..................... 404
    7.13. Antiphase (π) Boundaries and δ Boundaries ........... 405
          7.13.1. Antiphase Boundaries ........................ 405
          7.13.2. δ Boundaries ................................ 406
    7.14. Contrast from Precipitates and Other Defects ........ 408
          7.14.1. Vacancies ................................... 408
          7.14.2. Coherent Precipitates ....................... 409
          7.14.3. Semicoherent and Incoherent Particles ....... 414
          Further Reading ..................................... 414
          Problems ............................................ 415

8.  Diffraction Lineshapes .................................... 423
    8.1.  Diffraction Line Broadening and Convolution ......... 423
          8.1.1.  Crystallite Size Broadening ................. 424
          8.1.2.  Strain Broadening ........................... 427
          8.1.3.  Instrumental Broadening Convolution ......... 430
    8.2.  Fourier Transform Deconvolutions .................... 434
          8.2.1.  Mathematical Features ....................... 434
          8.2.2.  Effects of Noise on Fourier Transform
                  Deconvolutions .............................. 437
    8.3.  Simultaneous Strain and Size Broadening ............. 441
    8.4.  * Fourier Methods with Multiple Orders .............. 447
          8.4.1.  fig.1 * Formulation ............................. 447
          8.4.2.  * Strain Heterogeneity and Peak Asymmetry ... 452
          8.4.3.  * Column Lengths ............................ 455
          8.4.4.  fig.1 * Size Coefficients ....................... 456
          8.4.5.  * Practical Issues in Warren - Averbach
                  Analysis .................................... 458
    8.5.  Comments on Diffraction Lineshapes .................. 459
          Further Reading ..................................... 462
          Problems ............................................ 462

9.  Patterson Functions and Diffuse Scattering ................ 465
    9.1.  The Patterson Function .............................. 465
          9.1.1.  Overview .................................... 465
          9.1.2.  Atom Centers at Points in Space ............. 466
          9.1.3.  Definition of the Patterson Function ........ 467
          9.1.4.  Properties of Patterson Functions ........... 469
          9.1.5.  fig.1 Perfect Crystals .......................... 471
    9.2.  Patterson Functions for Homogeneous Disorder
          and Atomic Displacement Diffuse Scattering .......... 474
          9.2.1.  Deviations from Periodicity ................. 474
          9.2.2.  Uncorrelated Displacements .................. 475
          9.2.3.  * Correlated Displacements: Atomic Size
                  Effects ..................................... 478
          9.2.4.  fig.1 Temperature ............................... 480
    9.3.  Diffuse Scattering from Chemical Disorder ........... 485
          9.3.1.  Randomness - Uncorrelated Chemical
                  Disorder .................................... 485
          9.3.2.  fig.1 * SRO Parameters .......................... 489
          9.3.3.  fig.1 * Patterson Function for Chemical SRO ..... 491
          9.3.4.  Short-Range Order Diffuse Intensity ......... 492
          9.3.5.  fig.1 * Isotropic Materials ..................... 493
          9.3.6.  * Polycrystalline Average and Single
                  Crystal SRO ................................. 494
    9.4.  * Amorphous Materials ............................... 495
          9.4.1.  fig.1 * One-Dimensional Model ................... 495
          9.4.2.  fig.1 * Radial Distribution Function ............ 500
          9.4.3.  fig.1 * Partial Pair Correlation Functions ...... 504
    9.5.  Small Angle Scattering .............................. 506
          9.5.1  Concept of Small Angle Scattering ............ 506
          9.5.2.  * Guinier Approximation (small Δk) .......... 509
          9.5.3.  * Porod Law (large Δk) ...................... 511
          9.5.4.  fig.1 * Density-Density Correlations (all Δk) ... 514
          Further Reading ..................................... 516
          Problems ............................................ 517

10. High-Resolution ТЕМ Imaging ............................... 521
    10.1. Huygens Principle ................................... 522
          10.1.1. Wavelets from Points in a Continuum ......... 522
          10.1.2. Huygens Principle for a Spherical
                  Wavefront - Fresnel Zones ................... 527
          10.1.3. fig.1 Fresnel Diffraction Near an Edge .......... 531
    10.2. Physical Optics of High-Resolution Imaging .......... 536
          10.2.1. fig.1 Wavefronts and Fresnel Propagator ......... 536
          10.2.2. fig.1 Lenses .................................... 538
          10.2.3. fig.1 Materials ................................. 540
    10.3. Experimental High-Resolution Imaging ................ 542
          10.3.1. Defocus and Spherical Aberration ............ 542
          10.3.2. fig.1 Lenses and Specimens ...................... 547
          10.3.3. Lens Characteristics ........................ 550
    10.4. * Simulations of High-Resolution ТЕМ Images ......... 559
          10.4.1. Principles of Simulations ................... 559
          10.4.2. * Practice of Simulations ................... 565
    10.5. Issues and Examples in High-Resolution ТЕМ
          Imaging ............................................. 566
          10.5.1. Images of Nanostructures .................... 566
          10.5.2. Examples of Interfaces ...................... 569
          10.5.3. * Effects of Solute Misfit and Scattering
                  Factor Differences on Spot Intensities ...... 572
          10.5.4. * Specimen and Microscope Parameters ........ 576
          10.5.5. * Hints and Tricks for HRTEM ................ 583
    10.6. Z-Contrast Imaging .................................. 586
          10.6.1. Characteristics of Z-Contrast Imaging ....... 586
          10.6.2. Comparison of Z-Contrast Imaging
                  with HRTEM Imaging .......................... 590
          10.6.3. Z-Contrast Imaging with Atomic Resolution ... 592
          10.6.4. Developments in Atomic-Resolution Imaging ... 594
          Further Reading ..................................... 594
          Problems ............................................ 595

11. Dynamical Theory .......................................... 597
    11.1. Chapter Overview .................................... 597
    11.2. fig.1 * Mathematical Features of High-Energy
          Electrons in a Periodic Potential ................... 599
          11.2.1. fig.1 * The Schrцdinger Equation ................ 599
          11.2.2. fig.1 Kinematical and Dynamical Theory .......... 605
          11.2.3. The Crystal as a Phase Grating .............. 607
    11.3. First Approach to Dynamical Theory - Beam
          Propagation ......................................... 609
    11.4. fig.1 Second Approach to Dynamical Theory - Bloch
          Waves and Dispersion Surfaces ....................... 613
          11.4.1. Diffracted Beams, {Φg}, are Beats of
                  Bloch Waves, {Ψ(j)} ......................... 613
          11.4.2. Crystal Periodicity and Dispersion
                  Surfaces .................................... 619
          11.4.3. Energies of Bloch Waves in a Periodic
                  Potential ................................... 623
          11.4.4. fig.1 General Two-Beam Dynamical Theory ......... 626
    11.5. Essential Difference Between Kinematical and
          Dynamical Theories .................................. 632
    11.6. X Diffraction Error, sg, in Two-Beam Dynamical
          Theory .............................................. 637
          11.6.1. Bloch Wave Amplitudes and Diffraction
                  Error ....................................... 637
          11.6.2. Dispersion Surface Construction ............. 639
    11.7. Dynamical Diffraction Contrast from Crystal
          Defects ............................................. 641
          11.7.1. Dynamical Diffraction Contrast Without
                  Absorption .................................. 641
          11.7.2. fig.1 * Two-Beam Dynamical Theory of Stacking
                  Fault Contrast .............................. 646
          11.7.3. Dynamical Diffraction Contrast with
                  Absorption .................................. 650
    11.8. X * Multi-Beam Dynamical Theories of Electron
          Diffraction ......................................... 655
          Further Reading ..................................... 658
          Problems ............................................ 658
          
Bibliography .................................................. 663
    Further Reading ........................................... 663
    References and Figures .................................... 667

A.  Appendix .................................................. 677
    A.1.  Indexed Powder Diffraction Patterns ................. 677
    A.2.  Mass Attenuation Coefficients for Characteristic
          Kα X-Rays ........................................... 678
    A.3.  Atomic Form Factors for X-Rays ...................... 679
    A.4.  X-Ray Dispersion Corrections for Anomalous
          Scattering .......................................... 683
    A.5.  Atomic Form Factors for 200 keV Electrons
          and Procedure for Conversion to Other Voltages ...... 684
    A.6.  Indexed Single Crystal Diffraction Patterns: fcc,
          bcc, dc, hcp ........................................ 689
    A.7.  Stereographic Projections ........................... 699
    A.8.  Examples of Fourier Transforms ...................... 703
    A.9.  Kα1, Kα2 Splitting and the Rachinger Correction ..... 706
    A.10. Numerical Approximation for the Voigt Function ...... 707
    A.11. Debye-Waller Factor from Wave Amplitude ............. 708
    A.12. Review of Dislocations .............................. 709
    A.13. ТЕМ Laboratory Exercises ............................ 716
          A.13.1. Preliminary - JEOL 2000FX Daily Operation ... 716
          A.13.2. Preliminary - Philips 400T Daily Operation.  720
          A.13.3. Laboratory 1 - Microscope Procedures and
                  Calibration with Au and MoO3 ................ 722
          A.13.4. Laboratory 2 - Diffraction Analysis of θ'
                  Precipitates ................................ 726
          A.13.5. Laboratory 3 - Chemical Analysis of θ'
                  Precipitates ................................ 729
          A.13.6. Laboratory 4 - Contrast Analysis of
                  Defects ..................................... 730
    A.14. Fundamental and Derived Constants ................... 732

Index ......................................................... 735

In section titles, the asterisk, "*," denotes a more
specialized topic. The double dagger, "fig.1" warns of a higher level
of mathematics, physics, or crystallography.



 
Выставка новых поступлений  |  Поступления иностранных книг в библиотеки СО РАН : 2003 | 2006 |2008
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  Пожелания и письма: branch@gpntbsib.ru
© 1997-2024 Отделение ГПНТБ СО РАН (Новосибирск)
Статистика доступов: архив | текущая статистика
 

документ изменен: Wed Feb 27 14:52:50 2019. Размер: 30,642 bytes.
Посещение N 1659 c 26.04.2010