Low temperature plasmas: fundamentals, technologies and techniques. Vol. 1 (Weinheim, 2008). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

 
Выставка новых поступлений  |  Поступления иностранных книг в библиотеки СО РАН : 2003 | 2006 |2008
ОбложкаLow temperature plasmas: fundamentals, technologies and techniques. Vol. 1 / ed. by Hippler R. et al. - 2nd ed. - Weinheim: Wiley-VCH; Chichester: John Wiley [distributor], 2008. - 409 p. - ISBN 978-3-527-40673-9
 

Оглавление / Contents
 
Volume 1

    List of Contributors .................................... XXVII

1   Characteristics of Low-Temperature Plasmas Under
    Nonthermal Conditions - A Short Summary ..................... 1
    Alfred Rutscher
1.1 Introduction ................................................ 1
    1.1.1 Definition ............................................ 1
    1.1.2 Types of Plasmas ...................................... 2
1.2 Starting Point for Modeling the Plasma State ................ 2
    1.2.1 Single-Particle Trajectories .......................... 2
    1.2.2 Kinetic and Statistical Theory ........................ 2
    1.2.3 Hydrodynamic Approximation ............................ 3
1.3 The Role of Charge Carriers ................................. 3
1.4 Facts and Formulas .......................................... 4
    1.4.1  Electron Energy Distribution Functions (EEDF) ........ 4
    1.4.2  Kinetic Temperature of Electrons ..................... 4
    1.4.3  Coefficients for Particle and Energy Transport ....... 5
    1.4.4  Generalized Boltzmann Equilibrium .................... 6
    1.4.5  Am bipolar Diffusion ................................. 7
    1.4.6  Condition of Quasineutrality ......................... 9
    1.4.7  Debye Screening Length ............................... 9
    1.4.8  Degree of Ionization ................................ 11
    1.4.9  Electrical Conductivity ............................. 12
    1.4.10 Plasma Frequency .................................... 14

2   Electron Kinetics in Weakly Ionized Plasmas ................ 15
    Detlef Loffhagen, Florian Sigeneger, and Rolf Winkler
2.1 Introduction ............................................... 15
    2.1.1 The Active Role of Electrons in the Plasma ........... 15
    2.1.2 Action of Electric Fields and Collision Processes .... 16
2.2 Kinetic Treatment of the Electrons ......................... 18
    2.2.1 Velocity Distribution and Macroscopic Properties ..... 18
    2.2.2 Kinetic Equation of the Electrons .................... 19
    2.2.3 Treatment of the Kinetic Equation .................... 20
    2.2.4 Macroscopic Properties of the Electrons .............. 21
2.3 Kinetics in Time- and Space-Independent Plasmas ............ 23
    2.3.1 Basic Equations and Consistent Macroscopic
          Balances ............................................. 23
    2.3.2 Illustration of Distribution Functions and
          Macroscopic Quantities ............................... 25
2.4 Electron Kinetics in Time-Dependent Plasmas ................ 28
    2.4.1 Basic Equations for the Distribution Components ...... 28
    2.4.2 Balance Equations and Dissipation Frequencies ........ 29
    2.4.3 Temporal Relaxation of the Electrons ................. 31
2.5 Electron Kinetics in Space-Dependent Plasmas ............... 32
    2.5.1 Basic Equations and Consistent Balances .............. 33
    2.5.2 Spatial Relaxation of the Electrons .................. 34
2.6 Electron Kinetics in Time- and Space-Dependent Plasmas ..... 37
    2.6.1 Basic Equations and Macroscopic Balances ............. 38
    2.6.2 Spatio temporal Relaxation of the Electrons .......... 40
2.7 Concluding Remarks ......................................... 43
2.8 References ................................................. 44

3   Elementary Collision Processes in Plasmas .................. 47
    Kurt Becker and Chun C. Lin
3.1 Introduction ............................................... 47
3.2 Electron-impact-induced Collision Processes with Atoms ..... 49
    3.2.1 Electron Excitation of Atoms: Overview ............... 49
    3.2.2 Electron Excitation Out of Metastable Levels ......... 50
          3.2.2.1 Argon: a Case Study .......................... 51
          3.2.2.2 Other Rare Gases ............................. 56
    3.2.3 Electron-Impact Ionization ........................... 58
3.3 Electron-lmpact-Induced Collision Processes with
    Molecules .................................................. 61
3.4 Concluding Remarks ......................................... 67
3.5 References ................................................. 68

4   Elementary Processes of Plasma-Surface Interactions ........ 71
    Rainer Hippler
4.1 Introduction ............................................... 71
4.2 Theoretical Considerations ................................. 71
    4.2.1 Binary Collision Model ............................... 72
          4.2.1.1 Scattering Angle and Energy Transfer ......... 72
          4.2.1.2 Stopping Power ............................... 74
          4.2.1.3 Sputtering Yield ............................. 77
          4.2.1.4 Computer Simulations Based on the Binary
                  Collision Model .............................. 78
    4.2.2 Molecular Dynamics Model ............................. 79
    4.2.3 Scattering Potentials ................................ 80
    4.2.2 Repulsive Potentials ................................. 80
          4.2.3.2 Attractive Potentials ........................ 81
4.3 Scattering of Ions at Surfaces ............................. 84
    4.3.1 Implantation of Ions ................................. 84
    4.3.2 Backscattering of Ions ............................... 84
4.4 Physical Sputtering ........................................ 86
    4.4.1 Projectile Energy Dependence ......................... 86
    4.4.2 Energy Distribution of Sputtered Particles ........... 87
    4.4.3 Sputtering of Clusters ............................... 89
    4.4.4 Potential Sputtering Employing Highly Charged Ions ... 89
4.5 Electron Emission .......................................... 91
    4.5.1 Emission of Electrons by Electron Impact ............. 92
          4.5.1.1 Reflection of Electrons from Surfaces ........ 93
          4.5.1.2 Emission of Secondary Electrons by Electron
                  Impact ....................................... 94
    4.5.2 Emission of Electrons by Ion Impact .................. 94
    4.5.3 Emission of Electrons by Cluster Impact .............. 97
4.6 Chemical Effects ........................................... 98
    4.6.1 Chemical Sputtering and Plasma Etching ............... 98
4.7 References ................................................ 100

5 Plasma-Surface Interaction .................................. 103
     Holger Kersten and Achim von Keudell
5.1 Introduction .............................................. 103
5.2 Elementary Mechanisms in Low-Temperature Plasma
    Processing ................................................ 104
    5.2.1 Adsorption .......................................... 104
          5.2.1.1 Chemisorption versus Physisorption .......... 104
          5.2.1.2 Sticking Coefficient and Surface Loss
                  Probabilities ............................... 105
          5.2.1.3 Surface Coverage ............................ 106
          5.2.1.4 Surface Diffusion ........................... 108
          5.2.1.5 Energy Accommodation ........................ 109
    5.2.2 Surface Reactions ................................... 110
    5.2.3 Quantification of Surface Reactions ................. 112
          5.2.3.1 Estimation of Sticking Coefficients ......... 112
          5.2.3.2 Measurement of Sticking Coefficients ........ 112
    5.2.4 Ion Bombardment in Plasma Processing ................ 114
5.3 Modeling of Etching and Deposition Processes .............. 116
    5.3.1 Particle Balance .................................... 117
    5.3.2 Energy Balance ...................................... 118
5.4 Examples .................................................. 120
    5.4.1 Example: Deposition of a-Si:H Films ................. 120
    5.4.2 Example: Temperature Dependence of Plasma
          Etching ............................................. 122
    5.4.3 Example: Energy Balance During Thin Film
          Deposition .......................................... 124
5.4 References ................................................ 126

6   Fundamentals of Dusty Plasmas ............................. 129
    André Melzer and John Goree
6.1 Introduction .............................................. 129
6.2 Particle Charging ......................................... 130
    6.2.1 Orbital-Motion Limited Theory ....................... 130
    6.2.2 Reduction of the Charge due to High Particle
          Density ............................................. 133
    6.2.3 Electron Emission ................................... 134
          6.2.3.1 Secondary Electron Emission ................. 135
          6.2.3.2 Photoelectric Emission ...................... 136
    6.2.4 Ion Trapping ........................................ 136
    6.2.5 Charge Fluctuations ................................. 137
6.3 Forces on Particles ....................................... 137
    6.3.1 Electric Field Force ................................ 137
    6.3.2 Gravity ............................................. 138
    6.3.3 Ion Drag Force ...................................... 138
    6.3.4 Thermophoresis ...................................... 140
    6.3.5 Neutral Drag Force .................................. 140
    6.3.6 Radiation Pressure Forces ........................... 141
    6.3.7 Particle Interaction Potentials ..................... 141
          6.3.7.1 Particles in Isotropic Plasmas .............. 141
          6.3.7.2 Particles in the Plasma Sheath .............. 142
6.4 Experimental Methods ...................................... 143
    6.4.1 Particle Confinement and Levitation ................. 143
          6.4.1.1 RF Discharges ............................... 143
          6.4.1.2 DC Discharges ............................... 145
          6.4.1.3 Discharges with Nanoparticles ............... 146
    6.4.2 Charge Measurement Methods .......................... 147
          6.4.2.1 The Potential Well .......................... 147
          6.4.2.2 Linear Resonances ........................... 147
          6.4.2.3 Nonlinear Oscillations ...................... 148
    6.4.3 Particle Imaging and Tracking ....................... 149
6.5 Strongly Coupled Systems and Plasma Crystallization ....... 151
    6.5.1 Phase Diagram of Charged-Particle Systems ........... 152
    6.5.2 Correlation Functions ............................... 153
    6.5.3 Phase Transitions ................................... 154
    6.5.4 Comparison to Colloids .............................. 154
6.6 Waves in Dusty Plasmas .................................... 157
    6.6.1 Waves in Weakly Coupled Plasmas: Dust-Acoustic
          Wave(DAW) ........................................... 157
    6.6.2 Waves in Strongly Coupled Dusty Plasmas: Dust
          Lattice Wave ........................................ 159
          6.6.2.1 Dispersion Relations of Longitudinal and
                  Shear Modes in 2D ........................... 159
          6.6.2.2 Measurements of Compressional and Shear
                  Dust Lattice Waves .......................... 160
          6.6.2.3 Mach Cones .................................. 163
          6.6.2.4 Transverse Dust Lattice Waves ............... 164
          6.6.2.5 Natural Phonons ............................. 164
    6.6.3 Finite Clusters and Normal Modes .................... 166
          6.6.3.1 2D Clusters ................................. 166
          6.6.3.2 3D Clusters: Yukawa (Coulomb) Balls ......... 169
6.7 Concluding Remarks ........................................ 169
6.8 References ................................................ 170

7    Langmuir Probe Diagnostics of Low-Temperature Plasmas .... 175
     Sigismund Pfau and Milan Tichý
7.1  Introduction ............................................. 175
     7.1.1 Probe Shapes and Probe Characteristics ............. 175
     7.1.2 The Working Regimes of the Langmuir Probe .......... 178
     7.1.3 Advantages and Disadvantages of Probe
           Diagnostics ........................................ 179
7.2  The Langmuir Single-Probe Method ......................... 180
     7.2.1 Theoretical Foundations of the Langmuir Probe
           Method ............................................. 180
     7.2.2 Probe Characteristics - Example of the Spherical
           Probe .............................................. 181
           7.2.2.1 Probe Current at qvUp  0 ................... 181
           7.2.2.2 Probe Current at qvUp  0 ................... 182
7.3  General Theories of the Current to a Langmuir Probe ...... 183
     7.3.1 Starting System of Equations ....................... 183
     7.3.2 The Cold Ion Model by Allen, Boyd, and Reynolds
           (Ti/Te = 0) ......................................... 184
7.4  The Druyvesteyn Method for Estimation of the Electron
     Energy Distribution Function (EEDF) ...................... 186
7.5  Probe Diagnostics of Anisotropic Plasmas ................. 190
7.6  Probe Diagnostics Under Noncolli si on-Free Conditions ... 192
7.7  Langmuir Probe in a Magnetized Plasma .................... 197
7.8  Space and Time-Resolved Langmuir Probe Method ............ 199
     7.8.1 Space-Resolved Langmuir Probe Measurements ......... 199
     7.8.2 Time-Resolved Langmuir Probe Measurements .......... 200
           7.8.2.1 Time-Resolved Probe Measurements in
                   Periodically Changing Plasmas at ω < ωpi .... 202
           7.8.2.2 Probe Measurements of Time-Averaged Plasma
                   Parameters at ωpi < ω ≤ ωpe ................. 202
           7.8.2.3 Time-Resolved Probe Measurements in
                   Single-Shot Experiments .................... 204
7.9  Probe Diagnostic of Chemically Active Plasmas ............ 204
7.10 Double-Probe Technique ................................... 206
7.11 References ............................................... 208

8   Emission and absorption spectroscopy ...................... 215
    Jürgen Röpcke, Paul B. Davies, Frank Hempel, and
    Boris P. Lavrov
8.1 Introduction .............................................. 215
8.2 Instrumental Techniques ................................... 216
8.3 Emission Spectroscopy ..................................... 219
    8.3.1 General Considerations .............................. 229
    8.3.2 Actinometry ......................................... 220
8.4 Absorption Spectroscopy ................................... 222
    8.4.1 General Considerations .............................. 222
    8.4.2 Tnfrared Absorption Spectroscopy .................... 224
8.5 Results and Applications: Physical Properties of
    Plasmas ................................................... 227
    8.5.1 Temperatures and Distribution Functions ............. 228
          8.5.1.1 Translational Temperature ................... 228
          8.5.1.2 Rotational Temperature ...................... 229
          8.5.1.3 Vibrational Temperature ..................... 232
    8.5.2 Degree of Dissociation .............................. 233
    8.5.3 Electric Field, Electron Temperature, Density and
          Distribution Function ............................... 235
    8.5.4 Time-Resolved Spectroscopy .......................... 236
8.6 Conclusions ............................................... 237
8.7 References ................................................ 238

9   Mass Spectrometric Diagnostics ............................ 243
    Martin Schmidt, Rüdiger Foest, and Ralf Basner
9.1 Introduction .............................................. 243
9.2 Instrumentation ........................................... 245
    9.2.1 Ion Source .......................................... 245
    9.2.2 Mass Analyzer ....................................... 247
    9.2.3 Ion Energy Analyzer ................................. 249
    9.2.4 Ion Detector ........................................ 250
9.3 Coupling of the Mass Spectrometer with the Plasma
    System .................................................... 250
    9.3.1 Mechanical Coupling ................................. 250
    9.3.2 Electrical Coupling ................................. 255
9.4 Neutral Gas Mass Spectrometry ............................. 256
9.5 Ion Mass Spectrometry ..................................... 262
9.6 Mass Spectrometry for the Determination of Elementary
    Data for Plasma Physics ................................... 266
9.7 Conclusions ............................................... 267
9.6 References ................................................ 267

10   Cross-Correlation Emission Spectroscopy .................. 271
     Hans-Erich Wagner, Kirill Vadimovich Kozlov, and
     Ronny Brandenburg
10.1 Introduction ............................................. 271
10.2 The Technique of Cross-Correlation Spectroscopy .......... 272
10.3 Investigation of Filamentary and Diffuse Barrier
     Discharges ............................................... 275
     10.3.1 Discharge Operation ............................... 275
     10.3.2 Filamentary Barrier Discharges in Air ............. 277
     10.3.3 Systematic Variation of N2/O2 Gas Mixtures ........ 281
     10.3.4 Axial and Radial Development of Single
            Microdischarges ................................... 282
     10.3.5 Determination of Electric Field Strength and
            Relative Electron Density in the Microdischarge
            Channel in Air .................................... 284
            10.3.5.1 Development of E/n and nc along the MD
                     z-axis ................................... 284
            10.3.5.2 Axial and Radial Development of
                     Electric Field Strength .................. 286
     10.3.6 Determination of Effective Lifetime Constants of
            States N2+(B2u2)u'=0 and N2(C3u)u'·0 ................ 289
     10.3.7 Transition Between the Filamentary and Diffuse
            Barrier Discharges in N2/O2 Gas Mixtures .......... 290
     10.3.8 Filamentary and Diffuse Barrier Discharges in
            Noble Gas Containing Atmospheres .................. 292
            10.3.8.1 Diffuse Barrier Discharges in Gas
                     Mixtures of Nitrogen with Helium, Neon,
                     and Argon ................................ 293
            10.3.8.2 Diffuse and Filamentary Barrier
                     Discharges in Ne/O2 Gas Mixtures ......... 295
            10.3.8.3 Barrier Discharges in Pure Argon ......... 296
10.4 Investigation of Corona Discharges ....................... 298
     10.4.1 Positive Corona Discharges ........................ 298
     10.4.2 Negative Corona Discharges ........................ 299
10.5 Summary .................................................. 301
10.6 References ............................................... 302

11   Ellipsometric Analysis of Plasma-Treated Surfaces ........ 307
     Wolfgang Fukarek
11.1 Introduction ............................................. 307
11.2 Comparison with Other Techniques ......................... 308
11.3 Experimental Technique ................................... 309
     11.3.1 Instrumentation ................................... 309
     11.3.2 Data Analysis ..................................... 310
11.4 Examples ................................................. 312
     11.4.1 In situ Single Wavelength Ellipsometry Examples ... 312
            11.4.1.1 Direct Current (DC) Magnetron Sputter
                     Deposition of Indium-Tin-Oxide (ITO)
                     Films .................................... 313
            11.4.1.2 Temperature Dependence of a-C:H Film
                     Growth ................................... 313
            11.4.1.3 The Role of Low-Energy Hydrogen Ions in
                     Plasma-Enhanced Chemical Vapor
                     Deposition (PECVD) of Hydrocarbon
                     Films .................................... 315
     11.4.2 In situ Spectroscopic Ellipsometry Examples ....... 317
            11.4.2.1 Surface Temperature and Oxide Thickness
                     During Argon Sputter Cleaning ............ 317
            11.4.2.2 Analysis of Unstable Plasma Processes .... 319
            11.4.2.3 Monitoring of
                     Ion-Beam-Assisted-Deposition Processes ... 322
     11.4.3 Ex situ Spectroscopic Ellipsometry Examples ....... 323
            11.4.3.1 In-Plane Anisotropic Turbostratic Boron
                     Nitride Films ............................ 324
            11.4.3.2 Reactive Cathodic Arc Deposition of
                     Aluminum Oxide Films ..................... 325
11.5 Limitations and Remaining Issues ......................... 326
11.6 References ............................................... 327

12   Characterization of Thin Solid Films ..................... 329
     Harm Wulff and Hartmut Steffen
12.1 Introduction ............................................. 329
12.2 X-Ray Methods for Thin Film Analysis ..................... 330
     12.2.1 Grazing Incidence X-Ray Diffractometry (GIXD) ..... 330
     12.2.2 X-Ray Reflectometry (XR) .......................... 333
12.3 X-Ray Photoelectron Spectroscopy (XPS) ................... 335
12.4 Examples ................................................. 336
     12.4.1 Phase Analysis of Plasma-Deposited TiNx Films ..... 336
     12.4.2 Characterization of Defect Structures by X-Ray
            Investigations .................................... 337
            12.4.2.1 Imperfections of the First Type .......... 338
            12.4.2.2 Imperfections of the Second Type ......... 338
     12.4.3 Calculation of Depth Profiles in
            Plasma-Deposited Ti/TiSi Films .................... 341
     12.4.4 Structural Studies of Thin ITO Films .............. 343
     12.4.5 Investigation of Plasma-Deposited ITO Films ....... 347
            12.4.5.1 Influence of Oxygen Flow During Film
                     Deposition ............................... 348
            12.4.5.2 Influence of the Negative Substrate
                     Voltage .................................. 350
            12.4.5.3 Postdeposition Annealing ................. 351
     12.4.6 In silu Studies of Diffusion and Crystal Growth
            in Plasma-Deposited Thin ITO Films ................ 351
            12.4.6.1 Determination of Kinetic Parameters ...... 352
            12.4.6.2 Diffusion ................................ 353
            12.4.6.3 Crystallization .......................... 355
     12.4.7 Formation of Aluminum Oxide Using
            a Microwave-Induced Plasma ........................ 356
12.5 Characterization of Ag Clusters .......................... 359
12.6 Conclusions .............................................. 361
12.7 References ............................................... 361

13   Plasma Sources ........................................... 363
     Martin Schmidt and Hans Conrads
13.1 Introduction ............................................. 363
13.2 Properties of Nonthermal Plasmas ......................... 365
13.3 Plasma Generation by Electric Fields ..................... 368
     13.3.1 Direct Current (dc) Discharges .................... 368
     13.3.2 Pulsed Direct Current (dc) Discharges ............. 371
     13.3.3 Radiofrequency (rf) Discharges .................... 372
            13.3.3.1 Capacitively Coupled Radiofrequency
                     Discharges ............................... 372
            13.3.3.2 Inductively Coupled Radiofrequency
                     Discharges ............................... 374
     13.3.4 Microwave Discharges .............................. 376
13.4 Plasma Generation by Beams ............................... 379
13.5 Conclusions .............................................. 379
13.6 References ............................................... 381

14   Reactive Nonthermal Plasmas .............................. 385
     Hans-Erich Wagner
14.1 Introduction ............................................. 385
14.2 Chemical Quasiequilibria ................................. 386
     14.2.1 The Concept ....................................... 386
     14.2.2 Chemical Quasiequilibria and the Kinetic
            Background ........................................ 388
     14.2.3 Experimental Verification ......................... 391
14.3 Plasma Chemical Similarity ............................... 394
     14.3.1 Similarity Principles in the Chemistry of
            Nonthermal Plasmas ................................ 394
     14.3.2 Application to the Flow Reactor ................... 396
     14.3.3 Comparison with Experimental Results .............. 398
14.4 The Method of Generalized Macroscopic kinetics ........... 401
     14.4.1 History and Concept ............................... 401
     14.4.2 The Particle Balance Equations .................... 402
     14.4.3 Demonstration Examples ............................ 403
     14.4.4 Macroscopic Modeling of Experimental Results ...... 405
14.5 Summary .................................................. 407
14.6 References ............................................... 408


 
Выставка новых поступлений  |  Поступления иностранных книг в библиотеки СО РАН : 2003 | 2006 |2008
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  Пожелания и письма: branch@gpntbsib.ru
© 1997-2024 Отделение ГПНТБ СО РАН (Новосибирск)
Статистика доступов: архив | текущая статистика
 

Документ изменен: Wed Feb 27 14:52:28 2019. Размер: 29,948 bytes.
Посещение N 2570 c 26.04.2010