Someda C. Electromagnetic waves (Boca Raton, 2006). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

 
Выставка новых поступлений  |  Поступления иностранных книг в библиотеки СО РАН : 2003 | 2006 |2008
ОбложкаSomeda C. Electromagnetic waves. - 2nd ed. - Boca Raton: CRC Press, 2006. - 577 p. - ISBN 0-8493-9589-5
 

Оглавление / Contents
 
Preface ...................................................... xiii

Acknowledgments ................................................ xv

Preface to the Second Edition ................................ xvii

 1 Basic equations for electromagnetic fields ................... 1
   1.1   Introduction: Experimental laws ........................ 1
   1.2   Maxwell's equations and the charge continuity
         equation ............................................... 4
   1.3   Constitutive relations ................................. 5
   1.4   Imposed currents ....................................... 9
   1.5   Divergence equations .................................. 11
   1.6   Continuity conditions ................................. 13
   1.7   The wave equation. The Helmholtz equation ............. 15
   1.8   Magnetic vector potential ............................. 18
   1.9   Fitzgerald electric vector potential .................. 23
   1.10  Hertz vector potential ................................ 25
   1.11  Further applications and suggested reading ............ 26

References ..................................................... 33

 2 Polarization ................................................ 35
   2.1   Introduction .......................................... 35
   2.2   Steinmetz representation of time-harmonic vectors ..... 36
   2.3   Parallel and orthogonal complex vectors ............... 37
   2.4   Properties of time-harmonic vectors ................... 38
   2.5   Properties of the complex vectors ..................... 39
   2.6   Linear polarization ratio ............................. 40
   2.7   Circular polarization ratio ........................... 41
   2.8   Stokes parameters ..................................... 42
   2.9   The Poincare sphere ................................... 45
   2.10  Evolution of polarization in a linear medium:
         Jones matrix .......................................... 46
   2.11  Further applications and suggested reading ............ 48

References ..................................................... 51

 3 General theorems ............................................ 53
   3.1   Introduction .......................................... 53
   3.2   Poynting's theorem. Wave impedance .................... 53
   3.3   Uniqueness theorem .................................... 58
   3.4   Reciprocity theorem ................................... 61
   3.5   Equivalence theorem ................................... 63
   3.6   Induction theorem ..................................... 69
   3.7   Duality theorem ....................................... 71
   3.8   TE-TM field decomposition theorem ..................... 72
   3.9   Spatial symmetries. Reflection operators .............. 75
   3.10  Further applications and suggested reading ............ 79

References ..................................................... 87

 4 Plane waves in isotropic media .............................. 89
   4.1   Separability of variables in the homogeneous
         Helmholtz equation .................................... 89
   4.2   Solution of the homogeneous Helmholtz equation in
         Cartesian coordinates ................................. 90
   4.3   Plane waves: Terminology and classification ........... 93
   4.4   Traveling waves. Phase velocity ....................... 96
   4.5   Standing waves ........................................ 98
   4.6   Poynting vector and wave impedance ................... 101
   4.7   Completeness of plane waves .......................... 105
   4.8   Reflection and refraction of plane waves ............. 108
   4.9   Fresnel formulas ..................................... 113
   4.10  Reflection in multilayer structures .................. 115
   4.11  Total reflection ..................................... 118
   4.12  Reflection on the surface of a good conductor ........ 122
   4.13  Further applications and suggested reading ........... 124

References .................................................... 131

 5 Plane wave packets and beams ............................... 133
   5.1   Modulated waves. Group velocity ...................... 133
   5.2   Dispersion ........................................... 137
   5.3   The scalar approximation ............................. 140
   5.4   The equations of geometrical optics .................. 142
   5.5   Geometrical optics: Electromagnetic implications ..... 147
   5.6   Examples of ray tracing in radio propagation and in
         optics ............................................... 149
   5.7   The WKBJ method ...................................... 152
   5.8   Further comments on the WKBJ method .................. 155
   5.9   Gaussian beams ....................................... 157
   5.10  Hermite-Gauss and Laguerre-Gauss modes ............... 162
   5.11  Reflection and refraction of Gaussian beams .......... 168
   5.12  On the completeness of a series ...................... 171
   5.13  Further comments on rays and beams ................... 173
   5.14  Further applications and suggested reading ........... 174

References .................................................... 183

 6 Plane waves in anisotropic media ........................... 185
   6.1   General properties of anisotropic media .............. 185
   6.2   Wave equations and potentials in anisotropic media ... 188
   6.3   Birefringent media ................................... 189
   6.4   Fresnel's equation of wave normals ................... 193
   6.5   An application: Phase matching of two waves .......... 197
   6.6   Gyrotropic media ..................................... 201
   6.7   The Appleton-Hartree formula ......................... 203
   6.8   An example of permittivity dyadic .................... 206
   6.9   Second example of permeability dyadic ................ 210
   6.10  Faraday rotation ..................................... 211
   6.11  Further applications and suggested reading ........... 216

References .................................................... 221

 7 Waveguides with conducting walls ........................... 223
   7.1   Introduction ......................................... 223
   7.2   Homogeneously filled cylindrical structures:
         Simplified proof of the TE-TM decomposition
         theorem .............................................. 224
   7.3   Waveguides with ideal conducting walls ............... 228
   7.4   Transmission modes of lossless cylindrical
         structures ........................................... 229
   7.5   Mode orthogonality ................................... 235
   7.6   Some remarks on completeness ......................... 238
   7.7   Rectangular waveguides ............................... 239
   7.8   Circular waveguides and coaxial cables ............... 244
   7.9   Waveguides with nonideal walls ....................... 250
   7.10  On wall impedances ................................... 254
   7.11  Hybrid modes ......................................... 258
   7.12  Further applications and suggested reading ........... 260

References .................................................... 267

 8 Waves on transmission lines ................................ 269
   8.1   Introduction ......................................... 269
   8.2   Uniform transmission lines ........................... 270
   8.3   Impedance transformation along a transmission line ... 272
   8.4   Lossless transmission lines .......................... 273
   8.5   Low-loss transmission lines .......................... 275
   8.6   Partially standing waves ............................. 276
   8.7   The Smith chart ...................................... 278
   8.8   Remote measurement of the load impedance ............. 282
   8.9   Impedance matching ................................... 284
   8.10  Transmission-line equations:
         An alternative derivation ............................ 291
   8.11  ТЕМ and quasi-TEM propagation in planar lines ........ 297
   8.12  The coupled-mode equations ........................... 301
   8.13  Further applications and suggested reading ........... 305

References .................................................... 311

 9 Resonant cavities .......................................... 313
   9.1   Introduction ......................................... 313
   9.2   Separable coordinate systems in three dimensions ..... 314
   9.3   Completeness of resonator modes ...................... 315
   9.4   Mode orthogonality in a perfect resonator ............ 317
   9.5   Lossless cylindrical cavities ........................ 318
   9.6   Simple examples ...................................... 321
   9.7   Lossy resonators: Perturbation analysis.
         Intrinsic Q-factor ................................... 325
   9.8   Resonators coupled to external loads.
         Loaded Q-factor ...................................... 327
   9.9   Open resonators ...................................... 328
   9.10  Stability of open resonators ......................... 330
   9.11  Q-factor of an open resonator ........................ 333
   9.12  Further applications and suggested reading ........... 335

References .................................................... 341

10 Dielectric waveguides ...................................... 343
   10.1  Introduction ......................................... 343
   10.2  Waves guided by a surface of discontinuity.
         The characteristic equation .......................... 344
   10.3  Guided modes of a slab waveguide ..................... 349
   10.4  Radiation modes of a slab waveguide .................. 354
   10.5  The cylindrical rod: Exact modes ..................... 356
   10.6  Modal cut-off in the cylindrical rod ................. 360
   10.7  Weakly guiding rods: The LP modes .................... 363
   10.8  Dispersion in dielectric waveguides .................. 369
   10.9  Graded-index waveguides .............................. 375
   10.10 The alpha profiles: An important class of multimode
         graded-index fibers .................................. 380
   10.11 Attenuation in optical fibers ........................ 385
   10.12 Further applications and suggested reading ........... 389

References .................................................... 395

11 Retarded potentials ........................................ 397
   11.1  Introduction ......................................... 397
   11.2  Green's functions for the scalar Helmholtz
         equation ............................................. 398
   11.3  Lorentz-gauge vector potentials in a homogeneous
         medium ............................................... 401
   11.4  Field vectors in terms of dyadic Green's functions ... 404
   11.5  Inhomogeneous media: Polarization currents ........... 406
   11.6  Time-domain interpretation of Green's functions ...... 407
   11.7  Green's function expansion into orthogonal
         eigenfunctions ....................................... 410
   11.8  An example: Field in a rectangular box ............... 412
   11.9  Spherical harmonics .................................. 414
   11.10 Multipole expansion .................................. 420
   11.11 An introduction to cylindrical harmonics ............. 424
   11.12 Further applications and suggested reading ........... 426

References .................................................... 431

12 Fundamentals of antenna theory ............................. 433
   12.1  Introduction ......................................... 433
   12.2  Equivalent dipole moment of an extended source ....... 435
   12.3  Far-field approximations ............................. 437
   12.4  First example: Short electric-current element ........ 439
   12.5  Characterization of antennas ......................... 444
   12.6  Behavior of receiving antennas. Reciprocity .......... 448
   12.7  Examples ............................................. 454
   12.8  Antenna arrays ....................................... 464
   12.9  Broad-side and end-fire arrays ....................... 469
   12.10 Further applications and suggested reading ........... 471

References .................................................... 477

13 Diffraction ................................................ 479
   13.1  Introduction ......................................... 479
   13.2  The diffraction integral: The vector formulation ..... 479
   13.3  Illumination conditions. Babinet's principle ......... 484
   13.4  The scalar theory of diffraction ..................... 488
   13.5  Diffraction formulas and Rayleigh-Sommerfeld ......... 493
   13.6  The Fresnel diffraction region ....................... 495
   13.7  The Fraunhofer diffraction region .................... 497
   13.8  Examples ............................................. 500
   13.9  The field near a focus: First example of Fresnel
         diffraction .......................................... 508
   13.10 Diffraction from a straight edge: Second example of
         Fresnel diffraction .................................. 510
   13.11 A short note on the geometrical theory of
         diffraction .......................................... 515
   13.12 Further applications and suggested reading ........... 516

References .................................................... 521

14 An introduction to the theory of coherence ................. 523
   14.1  Background and purpose of the chapter ................ 523
   14.2  The analytical signal ................................ 523
   14.3  Complex degree of coherence .......................... 526
   14.4  Temporal coherence of a source ....................... 527
   14.5  Spatial coherence of a source ........................ 529
   14.6  Higher-order coherence: An introduction .............. 531
   14.7  An introduction to photocount distributions .......... 535
   14.8  Modal noise in optical-fiber transmission systems:
         A short outline ...................................... 539
   14.9  Further applications and suggested reading ........... 540

References .................................................... 545

Appendices .................................................... 547

 A Vector calculus: Definitions and fundamental theorems ...... 549

 В Vector differential operators in frequently used
   reference systems .......................................... 553

 С Vector identities .......................................... 555

 D Fundamentals on Bessel functions ........................... 557
   D.1   Bessel, Neumann and Hankel functions ................. 557
   D.2   Modified Bessel functions ............................ 560
   D.3   Bessel function formulas ............................. 561

References .................................................... 565

Further Suggested Reading ..................................... 567

Index ......................................................... 568


 
Выставка новых поступлений  |  Поступления иностранных книг в библиотеки СО РАН : 2003 | 2006 |2008
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  Пожелания и письма: branch@gpntbsib.ru
© 1997-2024 Отделение ГПНТБ СО РАН (Новосибирск)
Статистика доступов: архив | текущая статистика
 

Документ изменен: Wed Feb 27 14:52:20 2019. Размер: 19,056 bytes.
Посещение N 1692 c 26.04.2010