Nieto-Vesperinas M. Scattering and diffraction in physical oprics (Singapore, 2006). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

 
Выставка новых поступлений  |  Поступления иностранных книг в библиотеки СО РАН : 2003 | 2006 |2008
ОбложкаNieto-Vesperinas M. Scattering and diffraction in physical oprics. - 2nd ed. - Singapore: World Scientific Publishing, 2006. - 434 p. - ISBN 981-256-340-7
 

Оглавление / Contents
 
Preface to the First Edition ................................... xv

Preface to the Second Edition ................................. xix

Chapter 1.  Basic Equations for Electromagnetic Fields .......... 1
1.1 Maxwell's Equations ......................................... 1
1.2 Wave Equations .............................................. 3
1.3 Conservation Laws ........................................... 4
1.4 Scalar Theory of Optical Problems ........................... 6
1.5 Lorentz's Reciprocity Theorem ............................... 7
1.6 Integral Equations for the Electromagnetic Field.
    The Extinction Theorem ...................................... 8
    1.6.1 The vector form of Green's theorem .................... 9
    1.6.2 Integral theorems .................................... 10
    1.6.3 Integral theorems for scalar fields .................. 13
    1.6.4 Natural modes ........................................ 15
    1.6.5 Other extensions and uses of the extinction
          theorem .............................................. 15
Problems ....................................................... 16
References ..................................................... 17

Appendix 1.1: A Generalized Extinction Theorem and Its Role
              in Scattering Theory ............................. 18

Chapter 2.  Angular Spectrum Representation of Wavefields ...... 33
2.1  Introduction .............................................. 33
2.2  Expansion of Scalar Wavefields into Plane Waves in
     Source-Free Regions ....................................... 34
2.3  Connection between U(x,y,z) and its Boundary Value at
     z = 0 ..................................................... 36
2.4  Wavelength Resolution Limit ............................... 38
2.5  On the Validity of the Angular Spectrum Representation .... 39
2.6  An Alternative Representation in Angular Variables ........ 40
2.7  Source-Free Fields ........................................ 41
     2.7.1  Source-free fields satisfying the homogeneous
            Helmholtz equation everywhere and having
            components propagating in all directions ........... 42
     2.7.2  Source-free fields propagating in a half-space ..... 44
2.8  Asymptotic Approximation to Source-Free Fields ............ 45
     2.8.1  Fields propagating in a half-space free of
            sources ............................................ 45
     2.8.2  Fields satisfying the Helmholtz equation
            everywhere and with angular components
            propagating in all directions ...................... 47
2.9  Angular Spectrum Representation of Electromagnetic
     Fields .................................................... 47
2.10 Divergent and Convergent Spherical Waves and their
     Angular Spectrum Representation ........................... 48
2.11 Optical Beams: Diffraction-Free Beams ..................... 51
2.12 Asymptotic Approximations to Angular Spectrum
     Representations ........................................... 55
     2.12.1 Approximations for 0 < θ < π/2, 0 ≤ ф ≤ 2π ......... 56
     2.12.2 Approximations for θ = π/2 ......................... 56
     2.12.3 Approximations in the axial direction .............. 57
2.13 Contribution of the Evanescent Components in
     the Asymptotic Expressions ................................ 58
Problems ....................................................... 65
References ..................................................... 70

Chapter 3.  Radiated and Scattered Fields ...................... 73
3.1  Radiated Fields from a Localized Charge-Current
     Distribution .............................................. 74
3.2  Angular Spectrum Representation of Radiated Fields ........ 74
3.3  The Field and the Intensity Radiated in the Far Zone ...... 76
3.4  Scalar Theory of Radiated Wavefields ...................... 77
3.5  Examples of Radiation Fields: Charged Particle with
     Two-Dimensional Motion .................................... 78
     3.5.1 Field due to a charged particle moving in vacuum .... 79
     3.5.2 Particle moving uniformly in vacuum ................. 81
     3.5.3 Čerenkov radiation .................................. 83
3.6  Integro-Differential Equations for the Scattered
     Electromagnetic Field in a Time-Independent Medium.
     Angular Spectrum Representation Outside the Strip
     0 < z < L ................................................. 86
3.7  Angular Spectrum Representation of the Scattered
     Electromagnetic Field Inside the Strip 0 < z < L .......... 88
     3.7.1  Scattered field outside the scattering volume ...... 88
     3.7.2  Scattered field inside the scattering volume.
            The slowly varying amplitude approximation ......... 91
3.8  The First Born Approximation .............................. 94
3.9  Scattering from a Weakly Fluctuating Random Medium ........ 97
3.10 Scalar Approach to Scattered Scalar Wavefields ........... 100
     3.10.1 The first Born approximation for scalar
            wavefields ........................................ 102
     3.10.2 The Rytov approximation ........................... 103
     3.10.3 The Eikonal approximation ......................... 105
3.11 Multiple Scattering Theories ............................. 108
Problems ...................................................... 109
References .................................................... 114

Chapter 4.  Mathematical Properties of Radiated and
            Scattered Fields .................................. 117
4.1 Introduction .............................................. 117
4.2 The Angular Spectrum of Wavefields in Free-Space as
    the Boundary Value of an Entire Function .................. 117
4.3 Consequences for Radiated and Scattered Fields ............ 118
4.4 Consequences for Homogeneous and Evanescent Components .... 121
4.5 Consequences for Source-Free Fields ....................... 124
4.6 Conclusions and Extensions ................................ 125
Problems ...................................................... 126
References .................................................... 127

Appendix 4.1: Entire Functions of Exponential Type ............ 128

Appendix 4.2: Dispersion Relations ............................ 133

Appendix 4.3: The Whittaker-Shannon Sampling Theorem .......... 137

Chapter 5.  S-Matrix and Reciprocity .......................... 138
5.1  Representation of Fields Outside a Scatterer ............. 139
5.2  Definition of the S-Matrix ............................... 143
5.3  Reciprocity and Unitarity ................................ 143
5.4  The S-Matrix for Scalar Wavefields ....................... 145
5.5  The Partitioned S-Matrix ................................. 146
5.6  Incident Plane Wave ...................................... 149
5.7  Incident Source-Free Field ............................... 150
5.8  The Generalized Transmission and Reflection
     Coefficients ............................................. 151
5.9  The Transition Matrix .................................... 153
5.10 The Generalized Transmission and Reflection
     Coefficients for an Incident Source-Free Field ........... 154
5.11 The Generalized Stokes Relations ......................... 158
5.12 Example: Stokes Relations for Stratified Media ........... 161
5.13 Reciprocity of the Impulse Response for Scattering from
     Inhomogeneous Media ...................................... 164
     5.13.1 Definition of the impulse response ................ 164
     5.13.2 Reciprocity relations ............................. 167
Problems ...................................................... 168
References .................................................... 170

Chapter 6.  Elements of the Theory of Diffraction ............. 171
6.1  The Scalar Theory of Diffraction ......................... 172
6.2  Uniqueness of the Solution. Boundary Conditions .......... 174
6.3  The Kirchhoff Approximation .............................. 175
6.4  The Rayleigh-Sommerfeld Diffraction Integrals ............ 177
6.5  The Rayleigh-Sommerfeld Integrals and the Angular
     Spectrum Representation .................................. 180
6.6  Reciprocity, Diffraction for Small Angles ................ 182
6.7  The Fresnel Approximation ................................ 185
6.8  The Fraunhofer Approximation ............................. 188
6.9  Comparison with the Angular Spectrum Representation ...... 189
     6.9.1 Fresnel approximation .............................. 189
     6.9.2 Fraunhofer approximation ........................... 190
6.10 Example: Scalar Theory of Diffraction by a Circular
     Aperture ................................................. 191
6.11 Theory of the Boundary Diffraction Wave .................. 193
     6.11.1 The vector potential .............................. 193
     6.11.2 A mathematically consistent interpretation of
            the Kirchhoff diffraction integral ................ 197
6.12 Comparison with Experiment ............................... 198
6.13 Debye Approximation. Symmetries of Focused Wavefields
     and Phase Anomaly Near the Focus ......................... 201
6.14 Vector Theory of Diffraction ............................. 205
6.15 Uniqueness of the Electromagnetic Solution.
     Boundary Conditions ...................................... 207
6.16 Three Vector Formulations of Diffraction ................. 208
6.17 The Fraunhofer Approximation for the Vector Solution.
     Comparison with the Scalar Result ........................ 209
6.18 Diffraction Problems and the Extinction Theorem .......... 211
Problems ...................................................... 212
References .................................................... 215

Chapter 7.  Scattering from Rough Surfaces .................... 217
7.1  Introduction ............................................. 217
7.2  Statistical Characterization of Random Rough Surfaces .... 219
7.3  Boundary Condition for Scattering from Perfectly
     Conductive Surfaces ...................................... 219
7.4  Angular Spectrum Representation .......................... 220
7.5  The Kirchhoff Approximation .............................. 222
     7.5.1  Example: scattering of a linearly polarized
            plane wave ........................................ 225
     7.5.2  The mean scattered intensity ...................... 226
     7.5.3  On the validity of the Kirchhoff approximation .... 228
7.6  The Method of Small Perturbations ........................ 231
     7.6.1  Expansions for the mean scattered intensity ....... 233
     7.6.2  On the range of validity of the method of small
            perturbations ..................................... 235
7.7  The Rayleigh Method ...................................... 242
7.8  Illustration of the Scattering Equations for
     One-Dimensional Surfaces ................................. 244
7.9  Numerical Solution of the Scattering Equations ........... 246
     7.9.1  Numerical generation of random surfaces ........... 246
     7.9.2  Numerical calculation of the scattering
            integrals ......................................... 247
7.10 Scattering from Deeply Rough Surfaces.
     Enhanced Backscattering .................................. 249
     7.10.1 Comparison of experimental data and numerical
            results from one-dimensional surfaces ............. 252
7.11 Scattering from Metal and Dielectric Rough Surfaces ...... 253
     7.11.1 Example: one-dimensional surfaces ................. 256
7.12 Diffraction from Periodic Surfaces: Reflection
     Gratings ................................................. 261
7.13 Variation of the Diffracted Intensities .................. 265
Problems ...................................................... 268
References .................................................... 271

Chapter 8.  Propagation and Scattering of Phase-Conjugate
            Wavefields ........................................ 275
8.1 Introduction .............................................. 276
8.2 Phase-Conjugation of Wavefields Propagating in Free
    Space ..................................................... 279
    8.2.1 Phase-conjugation of fields that propagate into
          the same half-space ................................. 279
    8.2.2 Phase-conjugation of fields that propagate into
          complementary half-spaces ........................... 284
8.3 Scattering and Distortion Correction by
    Phase-Conjugation ......................................... 288
    8.3.1 Self-consistent formulation ......................... 291
    8.3.2 Multiple bounce approach ............................ 293
8.4 Other Studies ............................................. 296
Problems ...................................................... 297
References .................................................... 300

Chapter 9.  Inverse Diffraction ............................... 302
9.1  The Inverse Wavefleld Propagator ......................... 303
9.2  Alternative Form of the Inverse Propagator ............... 305
9.3  Inversion Formula for Fields without Evanescent
     Components ............................................... 306
9.4  Connection with the Reciprocity Theorem of
     Phase-Conjugated Wavefields .............................. 306
9.5  Connection with the Pseudoscopic Image in Holography ..... 307
9.6  System Approach to Inverse Diffraction ................... 310
9.7  Degrees of Freedom ....................................... 312
9.8  Representation by Eigenfunctions ......................... 314
9.9  Ill-Posed Nature of Inverse Diffraction .................. 316
9.10 The Problem of Phase Retrieval ........................... 319
9.11 Conclusions and Other Studies ............................ 321
Problems ...................................................... 322
References .................................................... 323

Chapter 10. Inverse Source and Scattering Problems in
            Optics ............................................ 326
10.1 Introduction ............................................. 326
10.2 Formulation of Inverse Source and Scattering Problems .... 328
10.3 Information Content of One Experiment .................... 330
10.4 Integral Equations for Fields over Arbitrary Surfaces .... 334
     10.4.1 Vector theory ..................................... 334
     10.4.2 Scalar theory ..................................... 336
10.5 Information Contained in the Imaging Equation.
Physical Meaning of the Backpropagation Equation .............. 337
10.6 Ambiguity in Inverse Source and Scattering Problems.
     Nonradiating Sources and Nonscattering Scatterers ........ 340
     10.6.1 Eigenfunction analysis ............................ 343
10.7 Reconstruction Using Fourier Series ...................... 345
10.8 Diffraction Tomography ................................... 347
     10.8.1 The central slice theorem ......................... 347
     10.8.2 Principles of computed tomography ................. 349
     10.8.3 The basic equation of diffraction tomography ...... 351
     10.8.4 The filtered backpropagation equation ............. 352
     10.8.5 The geometrical optics limit ...................... 356
     10.8.6 An example ........................................ 357
10.9 Other Inverse Scattering Methods Multiple Scattering
     Approaches ............................................... 358
Problems ...................................................... 361
References .................................................... 362

Chapter 11. Fundamentals of Near Field Optics (NFO) ........... 366
11.1  Introduction ............................................ 367
11.2  The Optical Signal at the Tip ........................... 369
11.3  Inverse Scattering Problem in Near Field Optics ......... 371
11.4  Inverse Scattering. Coherence. Artifacts ................ 373
11.5  Surface Plasmon Polaritons .............................. 375
      11.5.1  An example of existence of surface polariton
              excitations ..................................... 379
11.6  Reciprocity and Unitarity of the S-Matrix of Fields
      Containing Evanescent Components ........................ 382
      11.6.1  Transmission and reflection coefficients
      containing evanescent components ........................ 383
      11.6.2  Reciprocity relations for transmission and
              reflection coefficients with evanescent
              components ...................................... 385
      11.6.3  Reciprocity relations for the S-matrix .......... 387
11.7  Time-Reversal Symmetry of the S-Matrix of Fields
      Containing Evanescent Components ........................ 390
      11.7.1  Time-reversal invariance. Consequence for
              the S-matrix .................................... 390
      11.7.2  Time-reversal invariance and reciprocity ........ 391
11.8  Superresolution by Near Field Propagation in
      Left-Handed Material Slabs .............................. 392
11.9  Slab of Ideal Dispersiveless and Absorptionless
      Left-Handed Material .................................... 394
      11.9.1  Field inside a left-handed medium ............... 394
      11.9.2  Field transmitted by a slab of lossless
              left-handed material ............................ 396
      11.9.3  Singularity of the propagator inside the slab
              of left-handed material ......................... 397
11.10 Field Transmitted by an Absorbing Slab.
      Image Resolution ........................................ 400
      11.10.1 Resolution of the LHM slab lens and
              the inverse diffraction propagator .............. 403
Problems ...................................................... 407

Appendix 11.1: Lorentz's Reciprocity Theorem with Sources ..... 407

Appendix 11.2: Generalized Stokes Relations for Fields
               Containing Evanescent Components ............... 408

References .................................................... 409

Author Index .................................................. 415

Subject Index ................................................. 423


 
Выставка новых поступлений  |  Поступления иностранных книг в библиотеки СО РАН : 2003 | 2006 |2008
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  Пожелания и письма: branch@gpntbsib.ru
© 1997-2024 Отделение ГПНТБ СО РАН (Новосибирск)
Статистика доступов: архив | текущая статистика
 

Документ изменен: Wed Feb 27 14:52:20 2019. Размер: 22,361 bytes.
Посещение N 1564 c 26.04.2010