Cohen H. Number theory. Vol. 2: Analytic and modern tools (New York, 2007). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

 
Выставка новых поступлений  |  Поступления иностранных книг в библиотеки СО РАН : 2003 | 2006 |2008
ОбложкаCohen H. Number theory. Vol. 2: Analytic and modern tools. - New York; London: Springer, 2007. - 596 p. - (Graduate texts in mathematics; Vol. 240). - ISBN 9978-0-387-49893-5
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
Volume II

Preface ......................................................... v

Part III. Analytic Tools

9.  Bernoulli Polynomials and the Gamma Function ................ 3
    9.1. Bernoulli Numbers and Polynomials ...................... 3
         9.1.1. Generating Functions for Bernoulli
                Polynomials ..................................... 3
         9.1.2. Further Recurrences for Bernoulli
                Polynomials .................................... 10
         9.1.3. Computing a Single Bernoulli Number ............ 14
         9.1.4. Bernoulli Polynomials and Fourier Series ....... 16
    9.2. Analytic Applications of Bernoulli Polynomials ........ 19
         9.2.1. Asymptotic Expansions .......................... 19
         9.2.2. The Euler-MacLaurin Summation Formula .......... 21
         9.2.3. The Remainder Term and the Constant Term ....... 25
         9.2.4. Euler-MacLaurin and the Laplace Transform ...... 27
         9.2.5. Basic Applications of the Euler-MacLaurin
                Formula ........................................ 31
    9.3. Applications to Numerical Integration ................. 35
         9.3.1. Standard Euler-MacLaurin Numerical
                Integration .................................... 36
         9.3.2. The Basic Tanh-Sinh Numerical Integration
                Method ......................................... 37
         9.3.3. General Doubly Exponential Numerical
                Integration .................................... 39
    9.4. χ-Bernoulli Numbers, Polynomials, and Functions ....... 43
         9.4.1. χ-Bernoulli Numbers and Polynomials ............ 43
         9.4.2. χ-Bernoulli Functions .......................... 46
         9.4.3. The χ-Euler-MacLaurin Summation Formula ........ 50
    9.5. Arithmetic Properties of Bernoulli Numbers ............ 52
         9.5.1. χ-Power Sums ................................... 52
         9.5.2. The Generalized Clausen-von Staudt
                Congruence ..................................... 61
         9.5.3. The Voronoi Congruence ......................... 64
         9.5.4. The Kummer Congruences ......................... 67
         9.5.5. The Almkvist-Meurman Theorem ................... 70
    9.6. The Real and Complex Gamma Functions .................. 71
         9.6.1. The Hurwitz Zeta Function ...................... 71
         9.6.2. Definition of the Gamma Function ............... 77
         9.6.3. Preliminary Results for the Study of Γ(s) ...... 81
         9.6.4. Properties of the Gamma Function ............... 84
         9.6.5. Specific Properties of the Function ψ(s) ....... 95
         9.6.6. Fourier Expansions of ζ(s, x) and log(Γ(x)) ... 100
    9.7. Integral Transforms .................................. 103
         9.7.1. Generalities on Integral Transforms ........... 104
         9.7.2. The Fourier Transform ......................... 104
         9.7.3. The Mellin Transform .......................... 107
         9.7.4. The Laplace Transform ......................... 108
    9.8. Bessel Functions ..................................... 109
         9.8.1. Definitions ................................... 109
         9.8.2. Integral Representations and Applications ..... 113
    9.9. Exercises for Chapter 9 .............................. 118

10. Dirichlet Series and L-Functions .......................... 151
    10.1. Arithmetic Functions and Dirichlet Series ........... 151
          10.1.1. Operations on Arithmetic Functions .......... 152
          10.1.2. Multiplicative Functions .................... 154
          10.1.3. Some Classical Arithmetical Functions ....... 155
          10.1.4. Numerical Dirichlet Series .................. 160
    10.2. The Analytic Theory of L-Series ..................... 162
          10.2.1. Simple Approaches to Analytic
                  Continuation ................................ 163
          10.2.2. The Use of the Hurwitz Zeta Function
                  ζ(s, x) ..................................... 168
          10.2.3. The Functional Equation for the Theta
                  Function .................................... 169
          10.2.4. The Functional Equation for Dirichlet
                  L-Functions ................................. 172
          10.2.5. Generalized Poisson Summation Formulas ...... 177
          10.2.6. Voronoi's Error Term in the Circle
                  Problem ..................................... 182
    10.3. Special Values of Dirichlet L-Functions ............. 186
          10.3.1. Basic Results on Special Values ............. 186
          10.3.2. Special Values of L-Functions and Modular
                  Forms ....................................... 193
          10.3.3. The Polya Vinogradov Inequality ............. 198
          10.3.4. Bounds and Averages for L(χ, 1) ............. 200
          10.3.5. Expansions of ζ(s) Around s = к fig.1 fig.2≤1 ....... 205
          10.3.6. Numerical Computation of Euler Products and
                  Sums ........................................ 208
    10.4. Epstein Zeta Functions .............................. 210
          10.4.1. The Nonholomorphic Eisenstein Series
                  G(τ, s) ..................................... 211
          10.4.2. The Kronecker Limit Formula ................. 213
    10.5. Dirichlet Series Linked to Number Fields ............ 216
          10.5.1. The Dedekind Zeta Function ζK(s) ............ 216
          10.5.2. The Dedekind Zeta Function of Quadratic
                  Fields ...................................... 219
          10.5.3. Applications of the Kronecker Limit
                  Formula ..................................... 223
          10.5.4. The Dedekind Zeta Function of Cyclotomic
                  Fields ...................................... 230
          10.5.5. The Nonvanishing of L(χ, 1) ................. 235
          10.5.6. Application to Primes in Arithmetic
                  Progression ................................. 237
          10.5.7. Conjectures on Dirichlet L-Functions ........ 238
    10.6. Science Fiction on L-Functions ...................... 239
          10.6.1. Local L-Functions ........................... 239
          10.6.2. Global L-Functions .......................... 241
    10.7. The Prime Number Theorem ............................ 245
          10.7.1. Estimates for ζ(s) .......................... 246
          10.7.2. Newman's Proof .............................. 250
          10.7.3. Iwaniec's Proof ............................. 254
    10.8. Exercises for Chapter 10 ............................ 258

11. p-adic Gamma and L-Functions .............................. 275
    11.1. Generalities on p-adic Functions .................... 275
          11.1.1. Methods for Constructing p-adic Functions ... 275
          11.1.2. A Brief Study of Volkenborn Integrals ....... 276
    11.2. The p-adic Hurwitz Zeta Functions ................... 280
          11.2.1. Teichmtiller Extensions and Characters
                  on fig.2p ....................................... 280
          11.2.2. The p-adic Hurwitz Zeta Function
                  for x fig.1 Cfig.2P ................................ 281
          11.2.3. The Function ζp(s, x) Around s = 1 .......... 288
          11.2.4. The p-adic Hurwitz Zeta Function
                  for x fig.1 fig.2p .................................. 290
    11.3. p-adic L-Functions .................................. 300
          11.3.1. Dirichlet Characters in the p-adic
                  Context ..................................... 300
          11.3.2. Definition and Basic Properties of p-adic
                  L-Functions ................................. 301
          11.3.3. p-adic L-Functions at Positive Integers ..... 305
          11.3.4. χ-Power Sums Involving p-adic Logarithms .... 310
          11.3.5. The Function Lp(χ, s) Around s = 1 .......... 317
     11.4 Applications of p-adic L-Functions .................. 319
          11.4.1. Integrality and Parity of L-Function
                  Values ...................................... 319
          11.4.2. Bernoulli Numbers and Regular Primes ........ 324
          11.4.3. Strengthening of the Almkvist-Meurman
                  Theorem ..................................... 326
    11.5. p-adic Log Gamma Functions .......................... 329
          11.5.1. Diamond's p-adic Log Gamma Function ......... 330
          11.5.2. Morita's p-adic Log Gamma Function .......... 336
          11.5.3. Computation of some p-adic Logarithms ....... 346

          11.5.4. Computation of Limits of some Logarithmic
                  Sums ........................................ 356
          11.5.5. Explicit Formulas for ψр(r/m) and
                  ψр(χ,r/m) ................................... 359
          11.5.6. Application to the Value of Lp(χ, 1) ........ 361
    11.6. Morita's p-adic Gamma Function ...................... 364
          11.6.1. Introduction ................................ 364
          11.6.2 Definitions and Basic Results ................ 365
          11.6.3. Main Properties of the p-adic Gamma
                  Function .................................... 369
          11.6.4. Mahler-Dwork Expansions Linked to Гр(x) ..... 375
          11.6.5. Power Series Expansions Linked to Гр(x) ..... 378
          11.6.6. The Jacobstahl-Kazandzidis Congruence ....... 380
    11.7. The Gross-Koblitz Formula and Applications .......... 383
          11.7.1. Statement and Proof of the Gross-Koblitz
                  Formula ..................................... 383
          11.7.2. Application to L'p(χ, 0) .................... 389
          11.7.3. Application to trie Stickelberger
                  Congruence .................................. 390
          11.7.4. Application to the Hasse-Davenport Product
                  Relation .................................... 392
    11.8. Exercises for Chapter 11 ............................ 395

Part IV. Modern Tools

12. Applications of Linear Forms in Logarithms .............. . 411
    12.1. Introduction ........................................ 411
          12.1.1. Lower Bounds ................................ 411
          12.1.2. Applications to Diophantine Equations and
                  Problems .................................... 413
          12.1.3. A List of Applications ...................... 414
    12.2. A Lower Bound for |2m - 3n| ......................... 415
    12.3. Lower Bounds for the Trace of αn .................... 418
    12.4. Pure Powers in Binary Recurrent Sequences ........... 420
    12.5. Greatest  Prime Factors of Terms of Some Recurrent
          Sequences ........................................... 421
    12.6. Greatest Prime Factors of Values of Integer
          Polynomials ......................................... 422
    12.7. The Diophantine Equation axn - byn = с .............. 423
    12.8. Simultaneous Pell Equations ......................... 424
          12.8.1. General Strategy ............................ 424
          12.8.2. An Example in Detail ........................ 425
          12.8.3. A General Algorithm ......................... 426
    12.9. Catalan's Equation .................................. 428
    12.10. Thue Equations ..................................... 430
          12.10.1. The Main Theorem ........................... 430
          12.10.2. Algorithmic Aspects ........................ 432
    12.11. Other Classical Diophantine Equations .............. 436
    12.12. A Few Words on the Non-Archimedean Case ............ 439

13. Rational Points on Higher-Genus Curves .................... 441
    13.1. Introduction ........................................ 441
    13.2. The Jacobian ........................................ 442
          13.2.1. Functions on Curves ......................... 443
          13.2.2. Divisors .................................... 444
          13.2.3. Rational Divisors ........................... 445
          13.2.4. The Group Law: Cantor's Algorithm ........... 446
          13.2.5. The Group Law: The Geometric Point of
                  View ........................................ 448
    13.3. Rational Points on Hyperelliptic Curves ............. 449
          13.3.1. The Method of Dem'yanenko-Manin ............. 449
          13.3.2. The Method of Chabauty-Coleman .............. 452
          13.3.3. Explicit Chabauty According to Flynn ........ 453
          13.3.4. When Chabauty Fails ......................... 455
          13.3.5. Elliptic Curve Chabauty ..................... 456
          13.3.6. A Complete Example .......................... 459

14. The Super-Fermat Equation ................................. 463
    14.1. Preliminary Reductions .............................. 463
    14.2. The Dihedral Cases (2,2,r) .......................... 465
          14.2.1. The Equation x2 - y2 = zr .................... 465
          14.2.2. The Equation x2 + y2 = zr .................... 466
          14.2.3. The Equations x2 + 3y2 = z3 and
                  x2 + 3y2 = 4z3 ............................... 466
    14.3. The Tctrahcdral Case (2,3,3) ........................ 467
          14.3.1. The Equation x3 + y3 = z2 ................... 467
          14.3.2. The Equation x3 + y3 = 2z2 .................. 470
          14.3.3. The Equation x3 - 2y3 = z2 .................. 472
    14.4. The Octahedral Case (2,3,4) ......................... 473
          14.4.1. The Equation x2 - y4 = z3 ................... 473
          14.4.2. The Equation x2 + y4 = z3 ................... 475
    14.5. Invariants, Covariants, and Dessins d'Enfants ....... 477
          14.5.1. Dessins d'Enfants, Klein Forms, and
                  Covariants .................................. 478
          14.5.2. The Icosahedral Case (2,3,5) .............. 479
    14.6. The Parabolic and Hyperbolic Cases .................. 481
          14.6.1. The Parabolic Case .......................... 481
          14.6.2. General Results in the Hyperbolic Case ...... 482
          14.6.3. The Equations x4 ± y4 = z3 .................. 484
          14.6.4. The Equation x4 + y4 = z5 ................... 485
          14.6.5. The Equation x6 - y4 = z2 ................... 486
          14.6.6. The Equation x4 - y6 = z2 ................... 487
          14.6.7. The Equation x6 + y4 = z2 ................... 488
          14.6.8. Further Results ............................. 489
    14.7. Applications of Mason's Theorem ..................... 490
          14.7.1. Mason's Theorem ............................. 491
          14.7.2. Applications ................................ 492
    14.8. Exercises for Chapter 14 ............................ 493

15. The Modular Approach to Diophantine Equations ............. 495
    15.1. Newforms ............................................ 495
          15.1.1. Introduction and Necessary Software Tools ... 495
          15.1.2. Newforms .................................... 496
          15.1.3. Rational Newforms and Elliptic Curves ....... 497
    15.2. Ribet's Level-Lowering Theorem ...................... 498
          15.2.1. Definition of "Arises From" ................. 498
          15.2.2. Ribet's Level-Lowering Theorem .............. 499
          15.2.3. Absence of Isogenies ........................ 501
          15.2.4. How to use Ribet's Theorem .................. 503
    15.3. Format's Last Theorem and Similar Equations ......... 503
          15.3.1. A Generalization of FLT ..................... 504
          15.3.2. E Arises from a Curve with Complex
                  Multiplication .............................. 505
          15.3.3. End of the Proof of Theorem 15.3.1 .......... 506
          15.3.4. The Equation x2 = yp + 2rzp for p ≥ 7 and
                  r ≥ 2 ....................................... 507
          15.3.5. The Equation x2 = yp + zp for p ≥ 7 ......... 509
    15.4. An Occasional Bound for the Exponent ................ 509
    15.5. An Example of Serre-Mazur-Kraus ..................... 511
    15.6. The Method of Kraus ................................. 514
    15.7. "Predicting Exponents of Constants" ................. 517
          15.7.1. The Diophantine Equation x2 - 2 = yp ........ 517
          15.7.2. Application to the SMK Equation ............. 521
    15.8. Recipes for Some Ternary Diophantine Equations ...... 522
          15.8.1. Recipes for Signature (p,p,p) ............... 523
          15.8.2. Recipes for Signature (p,p,2) ............... 524
          15.8.3. Recipes for Signature (p,p,3) ............... 526

16. Catalan's Equation ........................................ 529
    16.1. Mihailescu's First Two Theorems ..................... 529
          16.1.1. The First Theorem: Double Wieferich Pairs ... 530
          16.1.2. The Equation (xp - 1)/(x - 1) = pyq ......... 532
          16.1.3. Mihailescu's Second Theorem:
                  p |h‾q and q| h‾p ........................... 536
    16.2. The + and — Subspaces and the Group S ............... 537
          16.2.1. The + and — Subspaces ....................... 538
          16.2.2. The Group S ................................. 540
    16.3. Mihailescu's Third Theorem: p < 4q2 and q < 4p2 ..... 542
    16.4. Mihailescu's Fourth Theorem: p ≡ 1 (mod q) or
          q ≡ 1 (mod p) ....................................... 547
          16.4.1. Preliminaries on Commutative Algebra ........ 547
          16.4.2. Preliminaries on the Plus Part .............. 549
          16.4.3. Cyclotomic Units and Thaine's Theorem ....... 552
          16.4.4. Preliminaries on Power Series ............... 554
          16.4.5. Proof of Mihailescu's Fourth Theorem ........ 557
          16.4.6. Conclusion: Proof of Catalan's Conjecture ... 560

Bibliography .................................................. 561

Index of Notation ............................................. 571

Index of Names ................................................ 579

General Index ................................................. 585


 
Выставка новых поступлений  |  Поступления иностранных книг в библиотеки СО РАН : 2003 | 2006 |2008
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  Пожелания и письма: branch@gpntbsib.ru
© 1997-2024 Отделение ГПНТБ СО РАН (Новосибирск)
Статистика доступов: архив | текущая статистика
 

Документ изменен: Wed Feb 27 14:52:16 2019. Размер: 23,723 bytes.
Посещение N 1438 c 26.04.2010