Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаThyssen P. Shattered symmetry: group theory from the eightfold way to the periodic table / P.Thyssen, A.Ceulemans. - Oxford: Oxford university press, 2017. - xxiii, 498 p.: ill., tab. - Bibliogr. in the noten. - Ind.: p.491-498. - ISBN 978-0-19-061139-2
Шифр: (И/В31-Т51) 02

 

Место хранения: 02 | Отделение ГПНТБ СО РАН | Новосибирск

Оглавление / Contents
 
List of Figures ................................................ XV
List of Tables ................................................. XV
Preface ....................................................... xxi

Part One Space Symmetries
1    primer on symmetry ......................................... 3
1.1. L The tragic life of Evariste Galois ....................... 3
     1.1.1. Entrance exams ...................................... 5
     1.1.2. Publish or perish ................................... 5
     1.1.3. Galois' mathematical testament
1.2. The concept of symmetry .................................... 7
     1.2.1. Symmetry defined .................................... 8
     1.2.2. The symmetries of a triangle ....................... 11
     1.2.3. Quantifying symmetry ............................... 12
     1.2.4. Discrete and continuous symmetries ................. 13
     1.2.5. Multiplying symmetries ............................. 13

2.   The elements of group theory .............................. 15
2.1. Mathematical definition ................................... 16
2.2. The abstract and the concrete ............................. 18
2.3. Abelian groups ............................................ 20
2.4. Examples of groups ........................................ 21
2.5. Subgroups ................................................. 24
2.6. Symmetry breaking ......................................... 24
2.7. Isomorphisms and homomorphisms ............................ 24
2.8. Historical interlude ...................................... 27
     2.8.1. Evariste Galois .................................... 28
     2.8.2. The French school .................................. 29
     2.8.3. Sir Arthur Cayley .................................. 29

3.   The axial rotation group .................................. 31
3.1. Active versus passive view of symmetry .................... 32
3.2. Rotation operators ........................................ 34
3.3. The axial rotation group .................................. 34
3.4. Transformations of coordinates ............................ 35
3.5. Transformations of coordinate functions ................... 37
3.6. Matrix representations .................................... 42
     3.6.1. Matrix representation of coordinate operators R .... 42
     3.6.2. Matrix representation of function operators R ...... 43
3.7. The orthogonal group O(2) ................................. 44
     3.7.1. Symmetry and invariance ............................ 44
     3.7.2. Proper and improper rotation matrices .............. 46
     3.7.3. Orthogonal groups: O(2) and SO(2) .................. 47

4.   The SO(2) group ........................................... 50
4.1. Infinite continuous groups ................................ 53
     4.1.1. The nature of infinite continuous groups ........... 53
     4.1.2. Parameters of continuous groups .................... 54
     4.1.3. Examples of continuous groups ...................... 54
     4.1.4. The composition functions .......................... 57
4.2. Lie groups ................................................ 58
     4.2.1. Definition ......................................... 59
     4.2.2. Parameter space .................................... 59
     4.2.3. Connectedness and compactness ...................... 60
4.3. The infinitesimal generator ............................... 61
     4.3.1. Matrix form of the S0(2) generator ................. 62
     4.3.2. Operator form of the S0(2) generator ............... 64
4.4. Angular momentum .......................................... 65
     4.4.1. Classical mechanical picture ....................... 65
     4.4.2. Quantum mechanical picture ......................... 66
4.5. SO(2) symmetry and aromatic molecules ..................... 67
     4.5.1. The particle on a ring model ....................... 67
     4.5.2. The shell perspective .............................. 71
     4.5.3. Aromatic molecules ................................. 71

5.   The SO(3) group ........................................... 75
5.1. The spherical rotation group .............................. 78
5.2. The orthogonal group in three dimensions .................. 80
     5.2.1. Rotation matrices .................................. 80
     5.2.2. The orthogonal group O(3) .......................... 82
     5.2.3. The special orthogonal group SO(3) ................. 82
5.3. Rotations and SO(3) ....................................... 83
     5.3.1. Orthogonality and skew-symmetry .................... 83
     5.3.2. The matrix representing an infinitesimal rotation .. 84
     5.3.3. The exponential map ................................ 86
     5.3.4. The Euler parameterization ......................... 87
5.4. The fig.16(3) Lie algebra .................................... 88
     5.4.1. The fig.16(3) generators .............................. 88
     5.4.2. Operator form of the SO(3) generators .............. 90
5.5. Rotations in quantum mechanics ............................ 91
     5.5.1. Angular momentum as the generator of rotations ..... 91
     5.5.2. The rotation operator .............................. 92
5.6. Angular momentum .......................................... 92
     5,6.1. The angular momentum algebra ....................... 92
     5.6.2. Casimir invariants ................................. 92
     5.6.3. The eigenvalue problem ............................. 93
     5.6.4, Dirac's ladder operator method ..................... 94
5.7. Application: Particle on a sphere ........................ 100
     5.7.1. Spherical components of the Hamiltonian
     5.7.2. The flooded planet model and BuckminsterfuUerene .. 103
5.8. Epilogue ................................................. 107

6.   Scholium I ............................................... 108
6.1. Symmetry in quantum mechanics ............................ 111
     6.1.1. State vector transformations ...................... 111
     6.1.2. Unitarity of symmetry operators ................... 112
     6.1.3. Transformation of observables ..................... 113
     6.1.4. Symmetry transformations of the Hamiltonian ....... 114
     6.1.5. Symmetry group of the Hamiltonian ................. 114
     6.1,6, Symmetry and degeneracy ........................... 115
6.2. Lie groups and Lie algebras .............................. 116
     6.2.1. Lie generators .................................... 117
     6.2.2. Lie algebras ...................................... 117
     6.2.3. Hermiticity and Lie generators .................... 120
6.3. Symmetry and conservation laws ........................... 121
     6.3.1. Noether's theorem ................................. 121
     6.3.2. Conserved quantities in quantum mechanics ......... 122
6.4. The Cartan-Weyl method ................................... 123
     6.4.1. The threefold path toward a Cartan-Weyl basis ..... 124
     6.4.2. Review of the angular momentum algebra ............ 127
6.5. The three pillars of group theory ........................ 130

Part Two Dynamic Symmetries
7.   The SU(3) group .......................................... 135
7.1. Historical prelude: The particle zoo ..................... 135
     7.1.1. Probing the inner structure of the atom (1897-
            1947) ............................................. 135
     7.1.2. Yukawa's pion (1947-1949) ......................... 136
     7.1.3. The growing particle jungle (1950-1960) ........... 138
     7.1.4, Quantum numbers and conservation laws ............. 139
     7.1.5, Strangeness (1953) ................................ 141
     7.1.6. The Mendeleev of elementary particle physics ...... 141
7.2. The one-dimensional harmonic oscillator .................. 143
     7.2.1. Classical mechanical treatment .................... 143
     7.2.2. Quantum mechanical treatment ...................... 146
7.3. The three-dimensional harmonic oscillator ................ 153
7.4. The unitary groups U(3) and SU(3) ........................ 158
     7.4.1. The unitary group U(3) ............................ 158
     7.4.2. Subgroups of the unitary group U(3) ............... 159
     7.4.3. The generators of U(3) ............................ 160
     7.4.4. The generators of SU(3) ........................... 163
     7.4.5. The fig.16(3) Lie algebra ............................ 166
     7.4.6. The Cartan subalgebra of fig.16(3) ................... 169
     7.4.7. The fig.17, fig.18, and fig.19 subalgebras of fig.16(3) ........... 174
7.5. The eightfold way (1961) ................................. 175
     7.5.1. An octet of particles ............................. 177
     7.5.2. Different SU(3) representations ................... 179
     7.5.3. Broken symmetries ................................. 181
     7.5.4. In Mendeleev's footsteps .......................... 182
7.6. Three quarks for Muster Mark (1964) ...................... 184
     7.6.1. Aces and Quarks ................................... 185
     7.6.2. Mesons ............................................ 190
     7.6.3. Baryons ........................................... 191
     7.6.4. Symmetry from the quark perspective ............... 195

8.   SU(2) and electron spin .................................. 200
8.1. From SU(3) to SU(2) ...................................... 200
8.2. Spinors and half-integer angular momentum ................ 201
8.3. The relationship between SU(2) and SO(3) ................. 203
8.4. The spinning electron .................................... 207

9.   The SO(4) group .......................................... 208
9.1. The hydrogen atom ........................................ 209
     9.1.1. A quartet of quantum numbers ...................... 209
     9.1.2. "Accidental" degeneracies and the Fock (n) rule ... 210
9.3. Classical Kepler problem ................................. 212
     9.3.1. General formulation ............................... 214
     9.3.2. Hamiltonian formulation ........................... 216
     9.3.3. Constants of the motion ........................... 217
     9.3.4. The Laplace-Runge-Lenz vector ..................... 218
     9.3.5. Equations of motion ............................... 223
     9.3.6. History of the Kepler problem ..................... 226
     9.3.7. History of the LRL vector (I) ..................... 228
9.4. Quantum mechanics of the hydrogen atom ................... 229
     9.4.1. Operators for conserved quantities ................ 230
     9.4.2. Conservation laws ................................. 231
9.5. The special orthogonal group SO(4) ....................... 232
     9.5.1. The generators of SO(4) ........................... 232
     9.5.2. The fig.16(4) Lie algebra ............................ 234
     9.5.3. The Cartan subalgebra of so(4) .................... 239
9.6. The origin of accidental degeneracies .................... 244
     9.6.1. Energy levels of the hydrogen atom ................ 244
     9.6.2. History of the LRL vector (II) .................... 247
     9.6.3. Hodographs in momentum space ...................... 249
     9.6.4. Stereographic projections in hyperspace ........... 252
     9.6.5. Peeking at the fourth dimension ................... 257

10.  Scholium II .............................................. 260
10.1. Oscillator roots of the hydrogen problem ................ 261
     10.1.1. Dimensional considerations ....................... 261
     10.1.2. The SU(4) oscillator ............................. 262
     10.1.3. The Kustaanheimo-Stiefel transformation .......... 263
10.2. The transformation of the hydrogen Hamьtonian ........... 266
10.3. Shattering SU(4) symmetry ............................... 268

Part Three Spectrum-Generating Symmetries
11.   The SO(2,l) group ....................................... 273
11.1. The road to noninvariance groups ........................ 275
      11.1.1. Historical prelude .............................. 275
      11.1.2. Invariance groups ............................... 277
      11.1.3. Noninvariance groups ............................ 278
11.2. The pseudo-orthogonal group SO(2,l) ..................... 279
      11.2.1. From SO(3) to SO(2,l) ........................... 279
      11.2.2. Theso(2,l) Lie algebra .......................... 281
      11.2.3. The Cartan-Weyl basis of fig.16(2,1) ............... 281
      11.2.4. S0(3) revisited ................................. 286
11.3. Hydrogenic realization of the SO(2,l) group ............. 287
      11.3.1. The radial Schrцdinger equation ................. 288
      11.3.2. The spectrum-generating SO(2,1) algebra ......... 289
11.5. Dirac's harmonic oscillator revisited ................... 293

12.   The SO(4,2) group ....................................... 297
12.1. The pseudo-orthogonal group SO(4,2) ..................... 299
      12.1.1. From SO(6) to SO(4,2) ........................... 299
      12.1.2. Hydrogenic realization of the SO(4,2) Lie
              algebra ......................................... 300
12.2. The Cartan-Weyl basis ................................... 304
      12.2.1. Cartan subalgebra and Cartan generators ......... 304
      12,2.2. Casimir invariants .............................. 306
      12.2.3. Weyl generators ................................. 307
      12.2.4. SO(4,2) root diagram ............................ 310
      12.2.5. SO(4,2) weight diagrams ......................... 311
12.3. Quantum alchemy ......................................... 313
      12.3.1. Raising and lowering m .......................... 313
      12.3,2, Raising and lowering n .......................... 315
      12.3.3. Raising and lowering l .......................... 316

13.   The periodic table ...................................... 323
13.1. Chemical periodicity .................................... 324
13.2. Quantum mechanics of atomic systems ..................... 327
      13.2.1. One-electron systems ............................ 327
      13.2.2. Many-electron systems ........................... 328
13.3. Quantum mechanics of the periodic system ................ 329
      13.3.1. The Fock (n) rule ............................... 330
      13.3.2. The hydrogenic (n, 1) rule ...................... 331
      13.3.3. The Madelung (n+l, n) rule ...................... 334
13.4. The Madelung (n+1, n) rule .............................. 335
      13.4.1. The left-step periodic table .................... 336
      13.4.2. Period doubling ................................. 340
      13.4.3. Ab initio derivation of the (n+1, n) rule ....... 342
13.5. Misapplying the Madelung rule ........................... 343
      13.5.1. The n+1 blunder ................................. 343
      13.5.2. The concept of an element ....................... 343
      13.5.3. Two interpretations of the (n+1, n) rule ........ 346
13.6. Group theory and the periodic system .................... 352
      13.6.1. APA versus EPA .................................. 352
      13.6.2. Group theoretical classification of the
              elements ........................................ 353
      13.6.3. System and system states ........................ 358
      13.6.4. Symmetry and symmetry breaking .................. 359
      13.6.5. Mass formulas ................................... 360
13.7. Literature study ........................................ 360
      13.7.1. Historical prelude .............................. 360
      13.7.2. Demkov and Ostrovsky (St. Petersburg, Russia) ... 372
13.8. Conclusion .............................................. 380

14.   SO(4,2) and the rules of atomic chess ................... 382
14.1. From the eightfold way to the periodic table ............ 382
      14.1.1. The atomic chessboard ........................... 383
      14.1.2. Correlation diagram ............................. 384
14.2. The rules of atomic chess ............................... 386
      14.2.1. The king and queen .............................. 386
      14.2.2. The rook ........................................ 387
      14.2.3. The knight ...................................... 389
      14.2.4. The bishop ...................................... 392
14.3. The origin of period doubling ........................... 395
14.4. The quest for the chiral bishop ......................... 396
      14.4.1. The Madelung sequences .......................... 396
      14.4.2. The Regge sequences ............................. 397
14.5. The algebra of chiral bishops ........................... 398
      14.5.1. Standard embedding of SO(3,1) in SO(3,2) ........ 399
      14.5.2. The S operator .................................. 401
      14.5.3. Construction of Regge and Madelung operators .... 403
      14.5.4. Regge-like algebras ............................. 405
      14.5.5. Madelung-like algebras .......................... 406
      14.5.6. Casimir operators ............................... 408
14.6. Nonlinear Lie algebras .................................. 411
14.7. Conclusion .............................................. 412
Epilogue ...................................................... 415

A.   Vector algebra ........................................... 417
A.l. Conceptual definition .................................... 417
     A.1.1. Notation .......................................... 417
A.2. Representation ........................................... 417
A.3. Vector operations ........................................ 418
A.4. The inner product ........................................ 419
A.5. The outer product ........................................ 420
A.6. Higher dimensional vectors ............................... 421

B.   Matrix algebra ........................................... 423
B.l. Conceptual definition .................................... 423
Б.2. Special matrices ......................................... 423
B.3. Matrix operations ........................................ 424
     B.3.1. Equality .......................................... 424
     B.3.2. Matrix transposition .............................. 424
     B.3.3. Matrix addition and subtraction ................... 425
     B.3.4. Scalar multiplication ............................. 425
B.4. Matrix products .......................................... 425
     B.4.1. Definition ........................................ 425
     B.4.2. Properties of matrix products ..................... 426
     B.4.3. The inner product in matrix notation .............. 426
     B.4.4. The transpose of a matrix product ................. 427
B.5. Trace and determinant of a square matrix ................. 428
     B.5.1. The trace of a square matrix ...................... 428
     B.5.2. The determinant of a square matrix ................ 428
B.6. Complex matrices ......................................... 430
B.7. Orthogonal matrices ...................................... 431
B.8. Unitary matrices ......................................... 431

C.   Taylor and Maclaurin series .............................. 433
D.   Quantum mechanics in a nutshell .......................... 436
D.I. Wave mechanics: the intuitive approach ................... 436
D.2. Quantum mechanics: the formal structure .................. 439
     D.2.1. Operators and eigenfunctions ...................... 439
     D.2.2. The bra-ket formalism ............................. 440
     D.2.3. Hermitian and unitary operators ................... 441
     D.2.4. The spectral decomposition postulate .............. 443
D.3. Operator commutations and uncertainty relations .......... 444
D.4. Time dependence .......................................... 445

E.   Determinant of an orthogonal niatrix ..................... 447

F.   Lie bracket .............................................. 449

G.   Laplacian in radial, and angular momentum ................ 453

H.   Quantum states of the SU(2) oscillator ................... 455

I.   Commutation relations .................................... 458
I.l. Canonical commutation relations .......................... 458
     I.1.1. Commutation relations for [fig.11i, fig.12j] ................. 458
     I.1.2. Commutation relations for [fig.11i,fig.11j] and [fig.12i,fig.12j] ...... 459
I.2. Angular momentum commutation relations ................... 460
     I.2.1. Commutation relations for fig.13i,fig.11j ................... 460
     I.2.2. Commutation relations for fig.13i,fig.12j ................... 460
     I.2.3. Commutation relations for fig.13i,fig.13j ................... 461
I.3. Auxiliary commutators .................................... 462
     I.3.1. Commutation relations for [fig.12i,fig.11j/r] ............... 462
     I.3.2. Commutation relations for fig.13i,fig.11j/r ................. 463
I.4. Reformulation of the LRL vector .......................... 465
I.5. Commutators with the LRL operator ........................ 466
     I.5.1. Commutation relations for fig.14i,fig.13j .................. 466
     I.5.2. Commutation relations for fig.14i,fig.14j .................. 468
I.6. More auxiliary commutators ............................... 471
     I.6.1. Commutation relations for fig.12i,fig.15 ................... 471
     I.6.2. Commutation relations for fig.12i2,fig.11j/r ................. 472
I.7. Commutators with the Hamiltonian ......................... 473
     I.7.1. Commutation relations for fig.13i,fig.15 ................... 473
     I.7.2. Commutation relations for fig.14i,fig.15 .................. 474
I.8. Angular momentum commutation relations ................... 475

J.   Identities of the Laplace-Runge-Lenz vector .............. 477
J.1. The scalar product fig.13fig.14 ................................ 477
J.2. The scalar product fig.142 ................................... 479

К.   Indicial notation ........................................ 482
K.1. The Kronecker delta δij .................................. 482
K.2. The Levi-Civita tensor εijk ............................... 482
     K.2.1. Contracted epsilon identities ..................... 482
     K.2.2. Indicial notation for cross products .............. 484

L.   S-transform of the so(4,2) algebra ....................... 485

Index ......................................................... 491


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:30:32 2019. Размер: 26,680 bytes.
Посещение N 712 c 19.02.2019