Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаPitaevskii L. Bose-Einstein condensation and superfluidity / L.Pitaevskii, S.Stringari. - Oxford: Oxford University Press, 2016. - xi, 553 p.: ill. - (International series of monographs on physics; 164). - Bibliogr.: p.527-550. - Ind.: p.551-553. - ISBN 978-0-19-875888-4
Шифр: (И/В36-Р70) 02

 

Место хранения: 02 | Отделение ГПНТБ СО РАН | Новосибирск

Оглавление / Contents
 
1  Introduction ................................................. 1

PART I
2  Long-range Order, Symmetry Breaking, and Order Parameter ..... 9
   2.1  One-body density matrix and long-range order ............ 9
   2.2  Order parameter ........................................ 13
3  The Ideal Bose Gas .......................................... 15
   3.1  The ideal Bose gas in the grand canonical ensemble ..... 15
   3.2  The ideal Bose gas in the box .......................... 19
   3.3  Fluctuations and two-body density ...................... 26
4  Weakly Interacting Bose Gas ................................. 29
   4.1  Lowest-order approximation: ground state energy and
        equation of state ...................................... 29
   4.2  Higher-order approximation: excitation spectrum and
        quantum fluctuations ................................... 33
   4.3  Particles and elementary excitations ................... 37
5  Nonuniform Bose Gases at Zero Temperature ................... 42
   5.1  The Gross-Pitaevskii equation .......................... 42
   5.2  Thomas-Fermi limit ..................................... 47
   5.3  Vortex line in the weakly interacting Bose gas ......... 48
   5.4  Vortex rings ........................................... 51
   5.5  Solitons ............................................... 55
   5.6  Small-amplitude oscillations ........................... 60
6  Superfluidity ............................................... 65
   6.1  Landau's criterion of superfluidity .................... 65
   6.2  Bose-Einstein condensation and superfluidity ........... 69
   6.3  Hydrodynamic theory of superfluids: zero temperature ... 70
   6.4  Quantum hydrodynamics .................................. 71
   6.5  Beliaev decay of phonons ............................... 74
   6.6  Two-fluid hydrodynamics: flrst and second sound ........ 76
   6.7  Fluctuations of the phase .............................. 81
   6.8  Rotation of superfluids ................................ 85
7  Linear Response Function .................................... 89
   7.1  Dynamic structure factor and sum rules ................. 89
   7.2  Density response function .............................. 94
   7.3  Current response function .............................. 98
   7.4  General inequalities .................................. 100
   7.5  Response function of the ideal Bose gas ............... 105
   7.6  Response function of the weakly interacting Bose gas .. 107
8  Superfluid 4Не ............................................. 110
   8.1  Elementary excitations and dynamic structure factor ... 110
   8.2  Thermodynamic properties .............................. 118
   8.3  Quantized vortices .................................... 121
   8.4  Momentum distribution and Bose-Einstein condensation .. 125
9  Atomic Gases: Collisions and Trapping ...................... 130
   9.1  Metastability and the role of collisions .............. 130
   9.2  Low-energy collisions and scattering length ........... 132
   9.3  Low-energy coUisions in two dimensions ................ 141
   9.4  Zeeman effect and magnetic trapping ................... 143
   9.5  Interaction with the radiation field and optical
        traps ................................................. 148

PART II
10 The Ideal Bose Gas in the Harmonic Trap .................... 153
   10.1 Condensate fraction and critical temperature .......... 153
   10.2 Density of single-particle states and thermodynamics .. 156
   10.3 Density and momentum distribution ..................... 158
   10.4 Thermodynamic limit ................................... 161
   10.5 Release of the trap and expansion of the gas .......... 161
   10.6 Bose-Einstein condensation in deformed traps .......... 163
   10.7 Adiabatic formation of ВЕС with non-harmonic traps .... 164
11 Ground State of a Trapped Condensate ....................... 168
   11.1 An instructive example: the box potential ............. 168
   11.2 Interacting condensates in harmonic traps: density
        and momentum distribution ............................. 170
   11.3 Energy, chemical potential, and virial theorem ........ 173
   11.4 Finite-size corrections to the Thomas-Fermi limit ..... 175
   11.5 Beyond-mean-field corrections ......................... 180
   11.6 Attractive forces ..................................... 182
12 Dynamics of a Trapped Condensate ........................... 184
   12.1 Collective oscillations ............................... 184
   12.2 Repulsive forces and the Thomas-Fermi limit ........... 187
   12.3 Sum rule approach: from repulsive to attractive
        forces ................................................ 193
   12.4 Finite-size corrections to the Thomas-Fermi limit ..... 196
   12.5 Beyond-mean-field corrections ......................... 196
   12.6 Large-amplitude oscillations .......................... 198
   12.7 Expansion of the condensate ........................... 200
   12.8 Dynamic structure factor .............................. 202
   12.9 Collective versus single-particle excitations ......... 213
13 Thermodynamics of a Trapped Bose Gas ....................... 217
   13.1 Role of interactions, scaling, and thermodynamic
        limit ................................................. 217
   13.2 The Hartree-Fock approximation ........................ 220
   13.3 Shift of the critical temperature ..................... 223
   13.4 Critical region near Тc ............................... 226
   13.5 Below Тc .............................................. 228
   13.6 Equation of state and density profiles ................ 233
   13.7 Collective oscillations at a finite temperature ....... 236
14 Superfluidity and Rotation of a Trapped Bose Gas ........... 238
   14.1 Critical velocity of a superfluid ..................... 238
   14.2 Moment of inertia ..................................... 241
   14.3 Scissors mode ......................................... 245
   14.4 Expanding a rotating condensate ....................... 247
   14.5 Rotation at higher angular velocities ................. 248
   14.6 Quantized vortices .................................... 252
   14.7 Vortices, angular momentum, and collective
        oscillations .......................................... 259
   14.8 Stability and precession of the vortex line ........... 266
   14.9 Quantized vortices and critical velocity in
        a toroidal trap ....................................... 269
15 Coherence, Interference, and the Josephson Effect .......... 272
   15.1 Coherence and the one-body density matrix ............. 273
   15.2 Interference between two condensates .................. 276
   15.3 Double-well potential and the Josephson effect ........ 284
   15.4 Quantization of the Josephson equations ............... 290
   15.5 Decoherence and phase spreading ....................... 296
   15.6 Boson Hubbard Hamiltonian ............................. 297

PART III
16 Interacting Fermi Gases and the BCS-BEC Crossover .......... 305
   16.1 The ideal Fermi gas ................................... 305
   16.2 Dilute interacting Fermi gases ........................ 307
   16.3 The weakly repulsive Fermi gas ........................ 307
   16.4 Gas of composite bosons ............................... 309
   16.5 The BCS limit of a weakly attractive gas .............. 311
   16.6 Gas at unitarity ...................................... 313
   16.7 The BCS-BEC crossover ................................. 319
   16.8 The Bogoliubov-de Gennes approach to the BCS-BEC
        crossover ............................................. 323
   16.9 Equation of state, momentum distribution, and
        condensate fraction of pairs .......................... 328
17 Fermi Gas in the Harmonic Trap ............................. 333
   17.1 The harmonically trapped ideal Fermi gas .............. 333
   17.2 Equation of state and density profiles ................ 336
   17.3 Momentum distribution ................................. 339
18 Tan Relations and the Contact Parameter .................... 341
   18.1 Wave function of a dilute Fermi gas near a Feshbach
        resonance ............................................. 341
   18.2 Tails of the momentum distribution .................... 342
   18.3 Dependence of energy on scattering length ............. 344
   18.4 Relation between the energy and the momentum
        distribution .......................................... 347
   18.5 Static structure factor ............................... 348
   18.6 The contact of a harmonically trapped gas ............. 350
19 Dynamics and Superfluidity of Fermi Gases .................. 354
   19.1 Hydrodynamics at zero temperature: sound and
        collective oscillations ............................... 354
   19.2 Expansion of a superfluid Fermi gas ................... 360
   19.3 Phonon versus pair-breaking excitations and Landau's
        critical velocity ..................................... 362
   19.4 Dynamic structure factor .............................. 365
   19.5 Radiofrequency transitions ............................ 366
   19.6 Two-fluid hydrodynamics: first and second sound ....... 370
   19.7 Rotations and vortices ................................ 376
20 Spin-polarized Fermi Gases ................................. 383
   20.1 Magnetic properties of the weakly repulsive Fermi
        gas ................................................... 383
   20.2 Superfluidity and magnetization ....................... 385
   20.3 Phase separation at unitarity ......................... 387
   20.4 Phase separation in harmonic traps at unitarity ....... 390
   20.5 The Fermi polaron ..................................... 394

PART IV
21 Quantum Mixtures and Spinor Gases .......................... 401
   21.1 Mixtures of Bose-Einstein condensates ................. 401
   21.2 Spinor Bose-Einstein condensates ...................... 407
   21.3 Coherently coupled Bose-Einstein condensates .......... 409
   21.4 Synthetic gauge fields and spin-orbit coupling ........ 414
   21.5 Fermi-Bose mixtures ................................... 424
22 Quantum Gases in Optical Lattices .......................... 428
   22.1 Single-particle properties in an optical lattice ...... 428
   22.2 Equilibrium properties of a Bose-Einstein condensate .. 432
   22.3 Localization in one-dimensional quasiperiodic
        potentials ............................................ 437
   22.4 Equilibrium properties of a Fermi gas in a lattice .... 440
   22.5 Bloch oscillations .................................... 442
   22.6 Elementary excitations of ВЕС gases in an optical
        lattice ............................................... 445
   22.7 Centre-of-mass oscillation of a Fermi gas in an
        optical lattice ....................................... 451
   22.8 Dimer formation in periodic potentials ................ 452
   22.9 Quantum fluctuations in optical lattices and the
        Bose-Hubbard model .................................... 454
23 Quantum Gases in Pancake and Two-dimensional Regimes ....... 459
   23.1 From three-dimensional pancakes to the
        two-dimensional regime ................................ 460
   23.2 Two-dimensional Bose gas at finite temperatures ....... 465
   23.3 Fast-rotating Bose gases and the lowest Landau level
        regime ................................................ 471
   23.4 Two-dimensional Fermi gas: the BEC-BCS crossover ...... 475
24 Quantum Gases in Cigar and One-dimensional Regimes ......... 482
   24.1 Bose gas: from three-dimensional radial cigars to
        the one-dimensional mean-field regime ................. 482
   24.2 Solitons and vortical configurations in cigar traps ... 487
   24.3 Phase fluctuations and long-range behaviour of the
        off-diagonal one-body density ......................... 492
   24.4 Lieb-Liniger theory: from the one-dimensional mean
        field to the Tonks-Girardeau limit .................... 495
   24.5 Dynamic structure factor and superfluidity ............ 503
   24.6 One-dimensional Fermi gas ............................. 506
25 Dipolar Gases .............................................. 512
   25.1 The dipole-dipole force ............................... 512
   25.2 Harmonic trapping and stability of dipolar ВЕС gases .. 516
   25.3 Dynamic behaviour of dipolar gases .................... 521
   25.4 Dipolar Fermi gases ................................... 525
   References ................................................. 527
Index ......................................................... 551


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:30:32 2019. Размер: 15,347 bytes.
Посещение N 731 c 19.02.2019