Навигация
Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаMathematical and computational modeling: with applications in natural and social sciences, engineering, and the arts / ed. by R.Melnik. - Hoboken: Wiley, 2015. - xvi, 314 p.: ill. - (Pure and applied mathematics: a Wiley series of texts, monographs, and tracts). - Bibliogr. at the end of the chapters. - Ind.: p.309-314. - ISBN 978-1-118-85398-6
Шифр: (И/В19-M39) 02
 

Место хранения: 02 | Отделение ГПНТБ СО РАН | Новосибирск

Оглавление / Contents
 
LIST OF CONTRIBUTORS ......................................... xiii
PREFACE ........................................................ xv

SECTION 1. INTRODUCTION ......................................... 1

1    Universality of Mathematical Models in Understanding
     Nature, Society, and Man-Made World ........................ 3
     Roderick Melnik
1.1  Human Knowledge, Models, and Algorithms .................... 3
1.2  Looking into the Future from a Modeling Perspective ........ 7
1.3  What This Book Is About ................................... 10
1.4  Concluding Remarks ........................................ 15
     References ................................................ 16

SECTION 2. ADVANCED MATHEMATICAL AND COMPUTATIONAL MODELS IN
PHYSICS AND CHEMISTRY .......................................... 17

2    Magnetic Vortices, Abrikosov Lattices, and Automorphic
     Functions ................................................. 19
     Israel Michael Sigal
2.1  Introduction .............................................. 19
2.2  The Ginzburg-Landau Equations ............................. 20
     2.2.1  Ginzburg-Landau energy ............................. 21
     2.2.2  Symmetries of the equations ........................ 21
     2.2.3  Quantization of flux ............................... 22
     2.2.4  Homogeneous solutions .............................. 22
     2.2.5  Type I and Type II superconductors ................. 23
     2.2.6  Self-dual case k = 1/√2 ............................ 24
     2.2.7  Critical magnetic fields ........................... 24
     2.2.8  Time-dependent equations ........................... 25
2.3  Vortices .................................................. 25
     2.3.1  n-vortex solutions ................................. 25
     2.3.2  Stability .......................................... 26
2.4  Vortex Lattices ........................................... 30
     2.4.1  Abrikosov lattices ................................. 31
     2.4.2  Existence of Abrikosov lattices .................... 31
     2.4.3  Abrikosov lattices as gauge-equivariant states ..... 34
     2.4.4  Abrikosov function ................................. 34
     2.4.5  Comments on the proofs of existence results ........ 35
     2.4.6  Stability of Abrikosov lattices .................... 40
     2.4.7  Functions γδ(τ), δ > 0 ............................. 42
     2.4.8  Key ideas of approach to stability ................. 45
2.5  Multi-Vortex Dynamics ..................................... 48
2.6  Conclusions ............................................... 51
     Appendix 2.A Parameterization of the equivalence classes
            [fig.1] ................................................ 51
     Appendix 2.В  Automorphy factors .......................... 52
     References ................................................ 54

3    Numerical Challenges in a Cholesky-Decomposed Local
     Correlation Quantum Chemistry Framework ................... 59
     David B. Krisiloff, Johannes M. Dieterich, Florian
     Libisch, and Emily A. Carter
3.1  Introduction .............................................. 59
3.2  Local MRSDCI .............................................. 61
     3.2.1  MRSDCI ............................................. 61
     3.2.2  Symmetric group graphical approach ................. 62
     3.2.3  Local electron correlation approximation ........... 64
     3.2.4  Algorithm summary .................................. 66
3.3  Numerical Importance of Individual Steps .................. 67
3.4  Cholesky Decomposition .................................... 68
3.5  Transformation of the Cholesky Vectors .................... 71
3.6  Two-Electron Integral Reassembly .......................... 72
3.7  Integral and Execution Buffer ............................. 76
3.8  Symmetric Group Graphical Approach ........................ 77
3.9  Summary and Outlook ....................................... 87
     References ................................................ 87

4    Generalized Variational Theorem in Quantum Mechanics ...... 92
     Mel Levy and Antonios Gonis
4.1  Introduction .............................................. 92
4.2  First Proof ............................................... 93
4.3  Second Proof .............................................. 95
4.4  Conclusions ............................................... 96
     References ................................................ 97

SECTION 3. MATHEMATICAL AND STATISTICAL MODELS IN LIFE AND
CLIMATE SCIENCE APPLICATIONS ................................... 99

5    A Model for the Spread of Tuberculosis with Drug-
     Sensitive and Emerging Multidrug-Resistant and
     Extensively Drug-Resistant Strains ....................... 101
     Julien Arino and Iman A. Soliman
5.1  Introduction ............................................. 101
     5.1.1   Model formulation ................................ 102
     5.1.2   Mathematical Analysis ............................ 107
       5.1.2.1  Basic properties of solutions ................. 107
       5.1.2.2  Nature of the disease-free equilibrium ........ 108
       5.1.2.3  Local asymptotic stability of the DFE ......... 108
       5.1.2.4  Existence of subthreshold endemic equilibria .. 110
       5.1.2.5  Global stability of the DFE when the
                bifurcation is "forward" ...................... 113
       5.1.2.6  Strain-specific global stability in
                "forward" bifurcation cases ................... 115
5.2  Discussion ............................................... 117
     References ............................................... 119

6    The Need for More Integrated Epidemic Modeling with
     Emphasis on Antibiotic Resistance ........................ 121
     Eili Y. Klein, Julia Chelen, Michael D. Makowsky, and
     Paul E. Smaldino
6.1  Introduction ............................................. 121
6.2  Mathematical Modeling of Infectious Diseases ............. 122
6.3  Antibiotic Resistance, Behavior, and Mathematical
     Modeling ................................................. 125
     6.3.1  Why an integrated approach? ....................... 125
     6.3.2  The role of symptomology .......................... 127
6.4  Conclusion ............................................... 128
     References ............................................... 129

SECTION 4. MATHEMATICAL MODELS AND ANALYSIS FOR SCIENCE AND
ENGINEERING ................................................... 135

7    Data-Driven Methods for Dynamical Systems: Quantifying
     Predictability and Extracting Spatiotemporal Patterns .... 137
     Dimitrios Giannakis and Andrew J. Majda
7.1  Quantifying Long-Range Predictability and Model Error
     through Data Clustering and Information Theory ........... 138
     7.1.1  Background ........................................ 138
     7.1.2  Information theory, predictability, and model
            error ............................................. 140
       7.1.2.1  Predictability in a perfect-model
                environment ................................... 140
       7.1.2.2  Quantifying the error of imperfect models ..... 143
     7.1.3  Coarse-graining phase space to reveal long-range
            predictability .................................... 144
       7.1.3.1  Perfect-model scenario ........................ 144
       7.1.3.2  Quantifying the model error in long-range
                forecasts ..................................... 147
     7.1.4  K-means clustering with persistence ............... 149
     7.1.5  Demonstration in a double-gyre ocean model ........ 152
       7.1.5.1  Predictability bounds for coarse-grained
                observables ................................... 154
       7.1.5.2  The physical properties of the regimes ........ 157
       7.1.5.3  Markov models of regime behavior in the
                1.5-layer ocean model ......................... 159
       7.1.5.4  The model error in long-range predictions
                with coarse-grained Markov models ............. 162
7.2  NLSA Algorithms for Decomposition of Spatiotemporal
     Data ..................................................... 163
     7.2.1  Background ........................................ 163
     7.2.2  Mathematical framework ............................ 165
       7.2.2.1  Time-lagged embedding ......................... 166
       7.2.2.2  Overview of singular spectrum analysis ........ 167
       7.2.2.3  Spaces of temporal patterns ................... 167
       7.2.2.4  Discrete formulation .......................... 169
       7.2.2.5  Dynamics-adapted kernels ...................... 171
       7.2.2.6  Singular value decomposition .................. 173
       7.2.2.7  Setting the truncation level .................. 174
       7.2.2.8  Projection to data space ...................... 175
     7.2.3  Analysis of infrared brightness temperature
            satellite data for tropical dynamics .............. 175
       7.2.3.1  Dataset description ........................... 176
       7.2.3.2  Modes recovered by NLSA ....................... 176
       7.2.3.3  Reconstruction of the TOGA COARE MJOs ......... 183
7.3  Conclusions .............................................. 184
     References ............................................... 185

8    On Smoothness Concepts in Regularization for Nonlinear
     Inverse Problems in Banach Spaces ........................ 192
     Bernd Hofmann
8.1  Introduction ............................................. 192
8.2  Model Assumptions, Existence, and Stability .............. 195
8.3  Convergence of Regularized Solutions ..................... 197
8.4  A Powerful Tool for Obtaining Convergence Rates .......... 200
8.5  How to Obtain Variational Inequalities? .................. 206
     8.5.1  Bregman distance as error measure: the benchmark
            case .............................................. 206
     8.5.2  Bregman distance as error measure: violating
            the benchmark ..................................... 210
     8.5.3  Norm distance as error measure:
            ^'-regularization ................................. 213
8.6  Summary .................................................. 215
     References ............................................... 215

9    Initial and Initial-Boundary Value Problems for First-
     Order Symmetric Hyperbolic Systems with Constraints ...... 222
     Nicolae Tarfulea
9.1  Introduction ............................................. 222
9.2  FOSH Initial Value Problems with Constraints ............. 223
     9.2.1  FOSH initial value problems ....................... 224
     9.2.2  Abstract formulation .............................. 225
     9.2.3  FOSH initial value problems with constraints ...... 228
9.3  FOSH Initial-Boundary Value Problems with Constraints .... 230
     9.3.1  FOSH initial-boundary value problems .............. 232
     9.3.2  FOSH initial-boundary value problems with
            constraints ....................................... 234
9.4  Applications ............................................. 236
     9.4.1  System of wave equations with constraints ......... 237
     9.4.2  Applications to Einstein's equations .............. 240
       9.4.2.1  Einstein-Christoffel formulation .............. 243
       9.4.2.2  Alekseenko-Arnold formulation ................. 246
     References ............................................... 250

10   Information Integration, Organization, and Numerical
     Harmonic Analysis ........................................ 254
     Ronald R. Coifman, Ronen Tainion, Matan Gavish, and
     Ali Haddad
10.1 Introduction ............................................. 254
10.2 Empirical Intrinsic Geometry ............................. 257
     10.2.1 Manifold formulation .............................. 259
     10.2.2 Mahalanobis distance .............................. 261
10.3 Organization and Harmonic Analysis of Databases/
     Matrices ................................................. 263
     10.3.1 Haar bases ........................................ 264
     10.3.2 Coupled partition trees ........................... 265
10.4 Summary .................................................. 269
     References ............................................... 270

SECTION 5. MATHEMATICAL METHODS IN SOCIAL SCIENCES AND ARTS ... 273
11   Satisfaction Approval Voting ............................. 275
     Steven J. Brams and D. Marc Kilgour
11.1 Introduction ............................................. 275
11.2 Satisfaction Approval Voting for Individual Candidates ... 277
11.3 The Game Theory Society Election ......................... 285
11.4 Voting for Multiple Candidates under S AV: A Decision-
     Theoretic Analysis ....................................... 287
11.5 Voting for Political Parties ............................. 291
     11.5.1 Bullet voting ..................................... 291
     11.5.2 Formalization ..................................... 292
     41.5.1 Multiple-party voting ............................. 294
11.6 Conclusions .............................................. 295
11.7 Summary .................................................. 296
     References ............................................... 297

12   Modeling Musical Rhythm Mutations with Geometric
     Quantization ............................................. 299
     Godfried T. Toussaint
12.1 Introduction ............................................. 299
12.2 Rhythm Mutations ......................................... 301
     12.2.1 Musicological rhythm mutations .................... 301
     12.2.2 Geometric rhythm mutations ........................ 302
12.3 Similarity-Based Rhythm Mutations ........................ 303
     12.3.1 Global rhythm similarity measures ................. 304
12.4 Conclusion ............................................... 306
     References ............................................... 307

INDEX ......................................................... 309

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск | English]
  Пожелания и письма: www@prometeus.nsc.ru
© 1997-2017 Отделение ГПНТБ СО РАН (Новосибирск)
Статистика доступов: архив | текущая статистика
 

Документ изменен: Mon Oct 3 16:32:43 2016. Размер: 17,017 bytes.
Посещение N 143 c 04.10.2016