Навигация
Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаFleisch D.A. A student's guide to vectors and tensor. - Cambridge; New York: Cambridge University Press, 2012. - x, 197 p.: ill. - Ref.: p.194. - Ind.: p.195-197. - ISBN 978-0-521-17190-8
Шифр: (И/В18-F65) 02
 

Место хранения: 02 | Отделение ГПНТБ СО РАН | Новосибирск

Оглавление / Contents
 
 
Preface ....................................................... vii
Acknowledgments ................................................. x

1  Vectors ...................................................... 1
   1.1  Definitions (basic) ..................................... 1
   1.2  Cartesian unit vectors .................................. 5
   1.3  Vector components ....................................... 7
   1.4  Vector addition and multiplication by a scalar ......... 11
   1.5  Non-Cartesian unit vectors ............................. 14
   1.6  Basis vectors .......................................... 20
   1.7  Chapter 1 problems ..................................... 23
2  Vector operations ........................................... 25
   2.1  Scalar product ......................................... 25
   2.2  Cross product .......................................... 27
   2.3  Triple scalar product .................................. 30
   2.4  Triple vector product .................................. 32
   2.5  Partial derivatives .................................... 35
   2.6  Vectors as derivatives ................................. 41
   2.7  Nabla - the del operator ............................... 43
   2.8  Gradient ............................................... 44
   2.9  Divergence ............................................. 46
   2.10 Curl ................................................... 50
   2.11 Laplacian .............................................. 54
   Chapter 2 problems .......................................... 60
3  Vector applications ......................................... 62
   3.1  Mass on an inclined plane .............................. 62
   3.2  Curvilinear motion ..................................... 72
   3.3  The electric field ..................................... 81
   3.4  The magnetic field ..................................... 89
   3.5  Chapter 3 problems ..................................... 95
4  Covariant and contravariant vector components ............... 97
   4.1  Coordinate-system transformations ...................... 97
   4.2  Basis-vector transformations .......................... 105
   4.3  Basis-vector vs. component transformations ............ 109
   4.4  Non-orthogonal coordinate systems ..................... 110
   4.5  Dual basis vectors .................................... 113
   4.6  Finding covariant and contravariant components ........ 117
   4.7  Index notation ........................................ 122
   4.8  Quantities that transform contravariantly ............. 124
   4.9  Quantities that transform covariantly ................. 127
   4.10 Chapter 4 problems .................................... 130
5  Higher-rank tensors ........................................ 132
   5.1  Definitions (advanced) ................................ 132
   5.2  Covariant, contravariant, and mixed tensors ........... 134
   5.3  Tensor addition and subtraction ....................... 135
   5.4  Tensor multiplication ................................. 137
   5.5  Metric tensor ......................................... 140
   5.6  Index raising and lowering ............................ 147
   5.7  Tensor derivatives and Christoffel symbols ............ 148
   5.8  Covariant differentiation ............................. 153
   5.9  Vectors and one-forms ................................. 156
   5.10 Chapter 5 problems .................................... 157
6  Tensor applications ........................................ 159
   6.1  The inertia tensor .................................... 159
   6.2  The electromagnetic field tensor ...................... 171
   6.3  The Riemann curvature tensor .......................... 183
   6.4  Chapter 6 problems .................................... 192

Further reading ............................................... 194
Index ......................................................... 195

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск | English]
  Пожелания и письма: www@prometeus.nsc.ru
© 1997-2017 Отделение ГПНТБ СО РАН (Новосибирск)
Статистика доступов: архив | текущая статистика
 

Документ изменен: Thu Mar 17 16:58:24 2016. Размер: 6,215 bytes.
Посещение N 113 c 29.03.2016