Навигация
Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаFranses E.I. Thermodynamics with chemical engineering applications. - Cambridge: Cambridge university press, 2014. - xxvii, 439 p.: illl. - (Cambridge series in chemical engineering). - Bibliogr.: p.428-432. - Ind.: p.433-439. - ISBN 978-1-107-06975-6
Шифр: (И/Л1-F85) 02
 

Место хранения: 02 | Отделение ГПНТБ СО РАН | Новосибирск

Оглавление / Contents
 
Preface and acknowledgments ................................... xix
List of symbols ............................................... xxi

1  Introduction and synopsis .................................... 1
   1.1  Scope and importance of thermodynamics .................. 1
   1.2  Bases and validity of thermodynamics .................... 1
   1.3  Goals of the book ....................................... 2
   1.4  Macroscopic, microscopic, and molecular aspects of
        thermodynamics .......................................... 3
   1.5  Summary of the key principles of thermodynamics ......... 4
   1.6  Equilibrium and non-equilibrium effects in
        thermodynamic analysis .................................. 5
   1.7  Overview of the book .................................... 6
        1.7.1  What this book covers ............................ 6
        1.7.2  What this book does not cover ................... 10
   1.8  Some metrics for learning and understanding
        thermodynamics ......................................... 12
2  Problems and concepts at the interface of mechanics and
   thermodynamics .............................................. 14
   2.1  Spatial distributions in gravity of pressure,
        density, and temperature for liquids or gases .......... 14
        2.1.1  Pressure distributions in incompressible
               liquids at a fixed temperature .................. 14
        2.1.2  Compressible liquids ............................ 17
        2.1.3  Pressure, density, and temperature
               distributions in gases .......................... 18
        2.1.4  Summary ......................................... 26
   2.2  A review of key concepts and some principles of
        mechanics: length, time, and mass ...................... 27
   2.3  A review of forces: definitions and types .............. 28
   2.4  Area, volume, velocity, and acceleration ............... 30
   2.5  Pressure and stress .................................... 32
   2.6  Mechanical work ........................................ 35
   2.7  Mechanical energy: potential energy and kinetic
        energy ................................................. 37
   2.8  Energy units ........................................... 39
   2.9  Other forms of work and of energy ...................... 40
   Summary ..................................................... 41
   Study questions ............................................. 42
   Problems .................................................... 44
3  Phases, interfaces, dispersions, and the first three
   principles of thermodynamics ................................ 47
   3.1  Introduction ........................................... 47
   3.2  "Equilibrium" and "non-equilibrium" phases ............. 47
   3.3  Types of phases: gases, liquids, and solids ............ 50
        3.3.1 Amorphous solid phases ........................... 52
   3.4  Other types of phases: liquid crystals ................. 53
   3.5  Phase transitions and phase equilibria ................. 55
   3.6  Phase boundaries, interfacial regions, interfaces,
        and surfaces ........................................... 58
   3.7  Biphasic dispersions, colloidal dispersions
        ("colloids") and dispersions of nanoparticles .......... 59
   3.8  Extensive and intensive properties of a phase .......... 61
   3.9  The first two major principles of thermodynamics ....... 61
   3.10 The Zeroth Law and the concept of the empirical
        temperature в .......................................... 62
   3.11 Equations of state ..................................... 65
   3.12 Ideal gas temperature .................................. 66
   Summary ..................................................... 67
   Study questions ............................................. 67
   Problems .................................................... 69
4  Internal energy, the First Law, heat, conservation of
   total energy, mass and energy balances, enthalpy, and
   heat capacities ............................................. 70
   4.1  Internal energy, U, the First Law, and heat ............ 70
        4.1.1  Joule's experiments. Evidence for the
               existence of internal energy .................... 70
        4.1.2  The first postulate of the First Law ............ 71
        4.1.3  The first generalization of the First Law
               and the principle of conservation of total
               energy .......................................... 72
        4.1.4  Definition and measurement of heat, Q, and
               further generalizations of the First Law ........ 72
        4.1.5  Generalized First Law and generalized energy
               conservation principle for closed systems in
               time derivative form and in differential form ... 75
        4.1.6  Exact differentials of state thermodynamic
               functions and inexact differentials of path-
               dependent thermodynamic quantities .............. 76
   4.2  Convection of energy, convective heat transfer, and
         mass/energy balances for open systems ................. 83
        4.2.1  Convection of energy ............................ 83
        4.2.2  Mass and energy balances for open systems.
               Elementary coverage ............................. 84
        4.2.3  Mass and energy balances. Advanced treatment
               and use of the enthalpy function ................ 89
        4.2.4  Enthalpy function. Definition and measurement ... 92
   4.3  Heat capacities ........................................ 93
        4.3.1  Definitions and measurements of heat
               capacities ...................................... 93
        4.3.2  Values of measured heat capacities for various
               systems, gases, liquids and solids, and their
               interpretations ................................. 95
   Summary ..................................................... 99
   Studv questions ............................................ 100
   Problems ................................................... 102
5  Equations of state for one-component and multicomponent
   systems .................................................... 103
   5.1  Introduction and measurements ......................... 103
        5.1.1  Examples of equations of state ................. 104
   5.2  The ideal gas equation of state and its molecular
        interpretation ........................................ 105
   5.3  Nonideal gas equations of state: the van der Waals
        equation and its molecular interpretation ............. 109
        5.3.1  Additional notes on the van der Waals
               equation of state (for the advanced student) ... 112
   5.4  Vapor pressure. Definition, measurements, and
        applications .......................................... 116
        5.4.1  Definition and measurements .................... 116
        5.4.2  Equations forp°(T) ............................. 117
        5.4.3  Applications of vapor pressure data ............ 118
   5.5  Use of the van der Waals equation of state to
        predict vapor pressures and molar volumes of vapor
        and liquid phases at equilibrium ...................... 120
   5.6  Other equations of state for nonideal gases and
        vapor-liquid systems .................................. 122
   5.7  The corresponding states principle and generalized
        correlations for gases, vapors, and liquids ........... 125
   5.8  Equations of state for liquids and solids ............. 126
   5.9  Specific volume and equation of state of one-
        component biphasic systems. Wet steam ................. 127
   5.10 Partial pressures and ideal gas mixtures .............. 129
   5.11 Absolute and relative humidity of air ................. 129
   5.12 Ideal and nonideal gas, liquid, and solid solutions.
        Molar volume, volume of mixing, and partial molar
        volumes ............................................... 131
   5.13 Equations of state for gas mixtures and vapor-liquid
        biphasic mixtures ..................................... 135
   Summary .................................................... 135
   Study questions ............................................ 136
   Problems ................................................... 137
6  Applications of the mass and energy balances and the
   equations of state to several classes of thermodynamic
   problems ................................................... 139
   6.1  Introduction .......................................... 139
   6.2  Closed systems. Expansion of an ideal gas ............. 140
   6.3  Closed systems. Problems with nonideal gases,
        liquids, and wet steam ................................ 147
        6.3.1  Isothermal, reversible, non-adiabatic
               expansion of a nonideal gas .................... 147
        6.3.2  Mixing in an isolated vessel ................... 147
        6.3.3  Heating of a liquid in an electrical pot.
               The "coffee-pot" problem ....................... 150
   6.4  Open systems at steady state or unsteady state.
        General guidelines .................................... 155
   6.5  The "coffee-pot" problem for an open evaporating
        system ................................................ 157
   6.6  Steady-state heat exchanger problems .................. 158
        6.6.1  Introduction and general equations ............. 158
        6.6.2  Cocurrent flow of ideal gases .................. 159
        6.6.3  Countercurrent flow of ideal gases ............. 160
        6.6.4  Cocurrent or countercurrent flow of liquids .... 160
        6.6.5  Heating of a liquid using steam as hot fluid ... 161
        6.6.6  Heating using superheated steam with complex
               temperature patterns ........................... 161
        6.6.7  Determining heat transfer coefficients of
               heat exchangers ................................ 162
   6.7  Throttling processes .................................. 166
        6.7.1  Overview and general equations ................. 166
        6.7.2  Ideal gas ...................................... 168
        6.7.3  Nearly ideal gas ............................... 168
        6.7.4  Wet steam at input, and a method for the
               determination of steam quality ................. 169
   6.8  Filling and emptying a tank with gases or liquids ..... 170
        6.8.1  Overview ....................................... 170
        6.8.2  Filling an empty tank with a gas from a gas
               source at constant properties .................. 170
        6.8.3  Other cases of tank filling or emptying ........ 173
   Summary .................................................... 176
   Study questions ............................................ 176
   Problems ................................................... 177
7  The Second Law, absolute temperature, entropy definition
   and calculation, and entropy inequality .................... 181
   7.1  Introduction .......................................... 181
   7.2  The experimental basis of, and need to develop, the
        Second Law of thermodynamics .......................... 182
   7.3  The first postulate or hypothesis of the Second Law.
        Efficiency of heat engines ............................ 185
   7.4  Idealized heat engines, the Carnot cycle, and
        quantitative treatment of the energy efficiency of
        heat engines .......................................... 186
   7.5  The discovery of the thermodynamic temperature T as
        a universal function of the empirical temperature θ ... 188
   7.6  The discovery that T = Tideai and measurement of T .... 190
   7.7  Ideal and actual efficiency of heat engines ........... 192
   7.8  Using heat engines in reverse. Refrigerators air-
        conditioners, and heat pumps .......................... 194
   7.9  The discovery of a new state function called entropy.
        Definition and measurement ............................ 198
   7.10 Combination of the First and Second Laws. General
        method for calculating entropy changes ................ 205
   7.11 Entropy change for adiabatic reversible and for
        adiabatically irreversible processes in closed
        systems. The entropy inequality principle ............. 206
   7.12 Summary of the various versions of the Second Law ..... 207
   7.13 Entropy inequality for open systems ................... 209
   Summary .................................................... 210
   Study questions ............................................ 210
   Problems ................................................... 211
8  Further implications of the Second Law. Introduction of
   the Helmholtz free energy, Gibbs free energy, chemical
   potential, and applications to phase equilibria, heat
   transfer, and mass transfer ................................ 213
   8.1  Introduction .......................................... 213
   8.2  First introduction of the Helmholtz and Gibbs free
        energy functions. First and Second Laws combined in
        four versions ......................................... 213
   8.3  Dependence of S, U, H,A, and G on T, p, and V.
        Maxwell's relations ................................... 215
        8.3.1  Entropy vs. p-V-T .............................. 215
        8.3.2  Internal energy vs. p-V-T ...................... 217
        8.3.3  Enthalpy vs. p-V-T ............................. 219
        8.3.4  Helmholtz free energy vs. p-V-T ................ 219
        8.3.5  Gibbs free energy vs. p-V-T .................... 220
        8.3.6  Maxwell's relations ............................ 221
   8.4  Application to the direction of heat transfer ......... 221
   8.5  Direction and maximum possible work for systems at
        fixed (m, T, V) or fixed (m, T, p) .................... 223
   8.6  Applications to phase equilibria for one-component
        systems ............................................... 226
   8.7  The Clapeyron equation and the Clausius-Clapeyron
        equation. How the temperature of a phase transition
        varies with pressure, or how the boiling point
        varies with pressure .................................. 228
   8.8  Determination of vapor pressure in vapor-liquid
        equilibrium with Maxwell's equal area construction .... 229
   8.9  The First and Second Laws for an open multicomponent
        multiphase system. Introduction of the concept of
        the chemical potential ................................ 231
   8.10 Direction of mass transfer and phase equilibrium in
        one- and two-component systems, in one or two phases .. 234
   8.11 The Gibbs phase rule .................................. 236
        8.11.1 Notes .......................................... 237
   8.12 Some quantitative tests of the First and Second
        Laws .................................................. 238
   Summary .................................................... 239
   Study questions ............................................ 240
   Problems ................................................... 242
9  Thermodynamic fugacity, thermodynamic activity, and other
   thermodynamic functions (U, H, S, A, G, fij) of ideal
   and nonideal solutions ..................................... 243
   9.1  Introduction .......................................... 243
   9.2  Fugacity and fugacity coefficients of one-component
        gases, vapors, liquids, and solids .................... 243
        9.2.1  Introduction and definition of fugacity and
               fugacity coefficients .......................... 243
        9.2.2  Determination of fugacity of ideal gases,
               nonideal gases, and vapors ..................... 245
        9.2.3  Fugacity of liquids ............................ 247
        9.2.4  Dependence of fugacity on temperature and
               pressure ....................................... 248
        9.2.5  Summary ........................................ 248
   9.3  Internal energy and enthalpy of gases, liquids, and
        solid solutions ....................................... 249
   9.4  Entropy and Gibbs free energy of ideal gases and
        nonideal gas, liquid, and solid solutions.
        Fugacities and activities in solution ................. 252
        9.4.1  Introduction ................................... 252
        9.4.2  Ideal gas mixtures ............................. 253
        9.4.3  Fugacities and fugacity coefficients of
               components of nonideal gas mixtures ............ 255
        9.4.4  Activities of components in solution and the
               Lewis and Randall rule ......................... 256
        9.4.5  Liquid or solid solutions ...................... 257
        9.4.6  New formulations of chemical potential
               equations in terms of mgacities or activities .. 258
        9.4.7  Summary ........................................ 259
   9.5 Phase separation in nonideal solutions ................. 259
        9.5.1  Introduction and solution models ............... 259
        9.5.2  General conditions for phase separation.
               Spinodals and binodals ......................... 261
        9.5.3  Application to the regular solution model and
               other solution models .......................... 263
        9.5.4  Application to binary temperature-composition
               phase diagrams ................................. 265
        9.5.5  Application to ternary systems and to ternary
               isothermal phase diagrams ...................... 266
   Summary .................................................... 270
   Study questions ............................................ 271
   Problems ................................................... 272
10 Vapor-liquid equilibria with applications to distillation .. 274
   10.1 Introduction .......................................... 274
   10.2 Vapor-liquid equilibria for ideal liquid solutions,
        ideal vapor solutions, and low pressures. Raoult's
        law ................................................... 276
        10.2.1 Derivation of the general equations for two
               components ..................................... 276
        10.2.2 Calculations of bubble-point and dew-point
               curves for two components ...................... 279
        10.2.3 Extension to three or more components .......... 285
   10.3 Vapor-liquid equilibrium for nonideal solutions at
        any pressure .......................................... 286
        10.3.1 General equations for two components ........... 286
        10.3.2 Calculations of bubble-point and dew-point
               curves ......................................... 287
        10.3.3 Azeotropy effects .............................. 290
        10.3.4 Effects of liquid-liquid phase separation ...... 293
        10.3.5 Extension to three or more components .......... 294
   Summary .................................................... 295
   Study questions ............................................ 295
   Problems ................................................... 296
11 Gas-liquid equilibria and applications to gas absorption
   or desorption .............................................. 298
   11.1 Introduction .......................................... 298
   11.2 Gas-liquid equilibria for ideal solutions. Henry's
        law ................................................... 299
        11.2.1 General equations for two-component systems .... 299
        11.2.2 Calculations of bubble and dew points and of
               solubilities ................................... 301
   11.3 Gas-liquid equilibria for nonideal solutions .......... 303
        11.3.1 Formulation with activities and fugacities ..... 303
        11.3.2 Further discussion of the C02-H20 system.
               Comparison of two methods for describing
               liquid solutions ............................... 304
   11.4 Extension to three or more components ................. 305
   Summary .................................................... 305
   Study questions ............................................ 306
   Problems ................................................... 306
12 Applications to liquid-liquid equilibria and liquid-
   liquid extraction .......................................... 307
   12.1 Introduction .......................................... 307
   12.2 Three components with one liquid solute ............... 309
   12.3 Three components with one non-liquid solute ........... 310
   12.4 Implications and applications to liquid-liquid
        extraction ............................................ 311
   12.5 Two or more solutes ................................... 312
   Summary .................................................... 312
   Study questions ............................................ 313
   Problems ................................................... 313
13 Osmosis, osmotic pressure, osmotic equilibrium, and
   reverse osmosis ............................................ 315
   13.1 Introduction .......................................... 315
   13.2 Origins and derivation of osmotic pressure for one
        or more solutes ....................................... 315
   13.3 Applications to determining salt dissociation in
        electrolytes, molecular masses of polymer solutes,
        and solution nonideality parameters ................... 319
        13.3.1 Electrolytes ................................... 319
        13.3.2 Polymers ....................................... 319
        13.3.3 Determination of number-average molecular
               mass by osmometry .............................. 320
        13.3.4 Solution nonideality parameters ................ 321
   13.4 Reverse osmosis applications. Water purification ...... 322
   Summary .................................................... 323
   Study questions ............................................ 324
   Problems ................................................... 324
14 The Third Law and the molecular basis of the Second and
   Third Laws ................................................. 325
   14.1 Introduction .......................................... 325
   14.2 The experimental and classical thermodynamic basis
        of the Third Law and of the absolute entropy .......... 327
   14.3 Various statements of the Third Law of
        thermodynamics ........................................ 328
   14.4 Some key concepts of classical and quantum
        statistical mechanics and thermodynamics .............. 329
        14.4.1 Microcanonical ensemble ........................ 331
        14.4.2 Canonical ensemble ............................. 331
   14.5 Connections of statistical mechanics and
        thermodynamics with classical thermodynamics .......... 334
   14.6 Molecular and statistical interpretation of
        thermodynamic concepts and laws ....................... 336
   Summary .................................................... 338
   Study questions ............................................ 338
   Problems ................................................... 339
15 Some special implications and applications of the First
   and Second Laws ............................................ 341
   15.1 Introduction .......................................... 341
   15.2 The Gibbs-Duhem equations and conditions for
        thermodynamic consistency of experimental data ........ 341
        15.2.1 Introduction ................................... 341
        15.2.2 The main form of the Gibbs-Duhem equation ...... 342
        15.2.3 Other Gibbs-Duhem equations for partial molar
               properties ..................................... 344
        15.2.4 The Gibbs-Duhem equations for activity
               coefficients of components in liquid
               solutions ...................................... 345
        15.2.5 The Gibbs-Duhem equations for biphasic
               systems with a fluid interface and the Gibbs
               adsorption isotherm ............................ 347
   15.3 Vapor pressure of a solution with a non-volatile
        solute. Applications to the determination of mole
        fractions, molecular weights, activity coefficients,
        and binary phase diagrams ............................. 349
   15.4 Boiling point elevation for a solvent with a non-
        volatile solute. Ebullioscopy ......................... 352
   15.5 Freezing point (or melting point) depression.
        Cryoscopy ............................................. 354
   15.6 Predictions of the solubility of a solid in an ideal
        liquid solution ....................................... 354
   Summary .................................................... 356
   Study questions ............................................ 356
   Problems ................................................... 357
16 Chemical reaction equilibria. One reaction ................. 358
   16.1 Introduction .......................................... 358
   16.2 Reaction equilibrium vs. reaction kinetics ............ 360
   16.3 Stoichiometry and atom balances ....................... 362
   16.4 The equilibrium extent of a chemical reaction ......... 363
   16.5 Enthalpy changes, AH°(T) of a chemical reaction.
        Standard heats of reaction ............................ 364
   16.6 The temperature dependence of AH°(7) .................. 366
   16.7 Calculation of the "adiabatic reactor temperature"
        or "adiabatic flame temperature" ...................... 368
   16.8 Implications for the operation and design of
        internal combustion engines ........................... 371
   16.9 Thermodynamic prediction of the direction of
        a chemical reaction and of the equilibrium extent
        of a chemical reaction ................................ 372
   16.10 The standard Gibbs free energy change for
        a reaction and definition of the equilibrium
        constant for gas-phase reactions ...................... 374
   16.11 The temperature dependence of the reaction
         equilibrium constant ................................. 377
   16.12 Reaction equilibria for gas-phase reactions.
         Examples for ideal or nonideal gas mixtures .......... 380
        16.12.1 Introduction .................................. 380
        16.12.2 Ideal gas-phase solutions. Effects of the
                reaction pressure, the initial number of
                moles, and the presence of inert gas
                components .................................... 381
        16.12.3 Reaction equilibria for nonideal gas
                mixtures ...................................... 387
   16.13 Reaction equilibria for liquid-phase and other
         homogeneous reactions ................................ 388
   16.14 Reaction equilibria of heterogeneous reactions ....... 392
   Summary .................................................... 394
   Study questions ............................................ 395
   Problems ................................................... 396
17 Chemical reaction equilibria. Two or more reactions
   occurring simultaneously ................................... 399
   17.1 Introduction .......................................... 399
   17.2 Determination of the number of independent reactions
        from the rank of the atomic matrix .................... 400
   17.3 Determining the equilibrium yields of two or more
        reactions from the equilibrium constants .............. 402
   17.4 Determination of the equilibrium yields of two or
        more reactions from the minimization of the Gibbs
        free energy under constraints ......................... 403
   17.5 An example of one reaction vs. multiple reactions ..... 409
   Summary .................................................... 415
   Study questions ............................................ 415
   Problems ................................................... 416
18 Applications of thermodynamics to energy engineering and
   environmental engineering .................................. 417
   18.1 Introduction .......................................... 417
   18.2 Energy sources and types, and energy interconversion .. 417
   18.3 Energy efficiency in buildings, transportation,
        agriculture, industrial production, and fuel use ...... 418
   18.4 Mass balances for methane and carbon dioxide in the
        atmosphere and carbon footprints ...................... 419
   18.5 Energy balances for the Earth's surface and
        atmosphere. Key issues for models of global warming
        and climate change .................................... 420
   18.6 Energy costs of materials used in energy production
        and industrial products ............................... 421
   18.7 Thermodynamics in problems of air pollution and
        water pollution ....................................... 422
   Summary .................................................... 423
   Study questions ............................................ 423
   Problems ................................................... 424

Appendix A A guide to thermodynamic data and bibliography ..... 425
   A.1  A guide to thermodynamic data ......................... 425
   A.2  A guide to bibliography of thermodynamics and related
        areas ................................................. 427
   References ................................................. 428
Index ......................................................... 433

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск | English]
  Пожелания и письма: www@prometeus.nsc.ru
© 1997-2017 Отделение ГПНТБ СО РАН (Новосибирск)
Статистика доступов: архив | текущая статистика
 

Документ изменен: Fri Jan 20 14:31:27 2017. Размер: 32,659 bytes.
Посещение N 171 c 12.01.2016