Hartmann J.-M. Collisional effects on molecular spectra: laboratory experiments and models, consequences for applications (Amsterdam; Oxford, 2008). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаHartmann J.-M. Collisional effects on molecular spectra: laboratory experiments and models, consequences for applications / J.-M.Hartmann, C.Boulet, D.Robert. - Amsterdam; Oxford: Elsevier, 2008. - xv, 411 p.: ill. - Bibliogr.: 365-407. - Sub. ind.: p.409-411. - ISBN 978-0-444-52017-3
 

Место хранения: 02 | Отделение ГПНТБ СО РАН | Новосибирск

Оглавление / Contents
 
FOREWORD ..................................................... xiii
ACKNOWLEDGMENTS ................................................ xv
I    INTRODUCTION ............................................... 1
II   GENERAL EQUATIONS .......................................... 9
     II.1  INTRODUCTION ......................................... 9
     II.2  DIPOLE AUTOCORRELATION FUNCTION ..................... 10
        II.2.1  General formalism .............................. 10
        II.2.2  The Hamiltonian of the molecular system ........ 13
     II.3  TOWARD "CONVENTIONAL" IMPACT THEORIES ............... 16
        II.3.1  General properties of the correlation
                function ....................................... 16
        II.3.2  The binary collision approximation ............. 17
        II.3.3  Initial statistical correlations ............... 19
        II.3.4  The impact approximation ....................... 20
     II.4  BEYOND THE IMPACT APPROXIMATION ..................... 23
     II.5  EFFECTS OF THE RADIATOR TRANSLATIONAL  MOTION ....... 25
     II.6  COLLISION-INDUCED SPECTRA ........................... 28
     II.7  CONCLUSION .......................................... 33
  APPENDICES
     II.A  Spectral and time domain profiles in various
        spectroscopies ......................................... 33
        1. Absoфtion, emission, and dispersion ................. 33
        2. Rayleigh and spontaneous Raman scatterings .......... 35
        3. Nonlinear Raman spectroscopies ...................... 38
        4. Time-resolved Raman spectroscopies .................. 42
     II.B   Some criteria for the approximations ............... 44
        1. The large number of perturbers ...................... 44
        2. The local thermodynamic equilibrium ................. 45
        3. The binary collisions ............................... 47
        4. The (full) impact assumption ........................ 49
     II.C  The impact relaxation matrix ........................ 50
        1. Analysis through the time dependence ................ 50
        2. Analysis through the frequency dependence ........... 54
     II.D  The Liouville space ................................. 55
     II.E  The resolvent approach .............................. 58
        1. Spectral-shape expression ........................... 58
        2. Rotational invariance ............................... 60
        3. Detailed balance .................................... 61
III  ISOLATED LINES ............................................ 63
     III.1  INTRODUCTION ....................................... 63
     III.2  DOPPLER BROADENING AND DICKE NARROWING ............. 73
        III.2.1  The Doppler broadening ........................ 74
        III.2.2  The Dicke narrowing ........................... 75
     III.3  BASIC MODELS FOR SPECTRAL LINE SHAPES .............. 77
        III.3.1  The Lorentz profile ........................... 77
        III.3.2  The Dicke profile ............................. 78
        III.3.3  The Voigt profile ............................. 79
        III.3.4  The Galatry profile ........................... 80
        III.3.5  The Nelkin-Ghatak profile ..................... 81
        III.3.6  Correlated profiles ........................... 83
        III.3.7  Characteristics of the basic profiles ......... 85
     III.4  SPEED-DEPENDENT LINE-SHAPE MODELS .................. 90
        III.4.1  Observation of speed-dependent
                 inhomogeneous profiles ........................ 90
        III.4.2  Basic speed-dependent profiles ................ 98
        III.4.3  The Rautian-Sobelman model ................... 104
        III.4.4  The Keilson-Storer memory model .............. 114
     III.5  AB INITIO APPROACHES OF THE LINE SHAPE ............ 126
        III.5.1  The Waldmann-Snider kinetic equation ......... 126
        III.5.2  The generalized Hess method .................. 128
        III.5.3  Collision kernel method ...................... 130
        III.5.4  Approaches from a simplified Waldmann-Snider
                 equation ..................................... 133
     III.6  CONCLUSION ........................................ 139
  APPENDIX
     III. A  Computational aspects ............................ 140
        1. Algorithms for the Voigt and Galatry profiles ...... 140
        2. Computation of speed-dependent profiles ............ 142
IV   COLLISIONAL LINE MIXING (WITHIN CLUSTERS OF LINES) ....... 147
     IV.l  INTRODUCTION ....................................... 147
     IV.2  THE SPECTRAL SHAPE ................................. 154
        IV.2.1  Approximations and general expressions ........ 154
        IV.2.2  Asymptotic expansions ......................... 158
        IV.2.3  Computational aspects and recommendations ..... 169
     IV.3  CONSTRUCTING THE IMPACT RELAXATION MATRIX .......... 173
        IV.3.1  Simple empirical (classical) approaches ....... 174
        IV.3.2  Statistically based energy gap fitting laws ... 181
        IV.3.3  Dynamically based scaling laws ................ 188
        IV.3.4  Semi-classical models ......................... 199
        IV.3.5  Quantum models ................................ 211
     IV.4  DETERMINING LINE-MIXING PARAMETERS FROM
        EXPERIMENTS ........................................... 218
        IV.4.1  Introduction .................................. 218
        IV.4.2  Relaxation matrix elements .................... 222
        IV.4.3  First-order line-coupling coefficients ........ 224
        IV.4.4  Mixed theoretical model and measured spectra
                fitting approaches ............................ 227
     IV.5  LITERATURE REVIEW .................................. 227
        IV.5.1  Available line-mixing data .................... 228
        IV.5.2  Comparisons between predictions and
                laboratory measurements ....................... 229
        IV.5.3  Comparisons between predictions and
                atmospheric measurements ...................... 232
     IV.6  CONCLUSION ......................................... 232
  APPENDICES
     IV.A  Vibrational dephasing .............................. 233
     IV.B  Perturbed wave functions ........................... 237
     IV.C  Resonance broadening ............................... 238

V    THE FAR WINGS (BEYOND THE IMPACT APPROXIMATION) .......... 241
     V.l  INTRODUCTION ........................................ 241
     V.2  EMPIRICAL MODELS .................................... 243
        V.2.1  The X factor approach .......................... 243
        V.2.2  The tabulated continua ......................... 246
        V.2.3  Other approaches ............................... 248
     V.3  FAR WINGS CALCULATIONS: THE QUASISTATIC APPROACH .... 248
        V.3.1  General expressions ............................ 249
        V.3.2  Practical implementation and typical results ... 252
        V.3.3  The band average line shape: back to the X
               factors ........................................ 255
     V.4   FROM RESONANCE TO THE FAR WING: A PERTURBATIVE
           TREATMENT .......................................... 257
        V.4.1  General expressions ............................ 257
        V.4.2  Illustrative results ........................... 259
     V.5  FROM RESONANCE TO THE FAR WING: A NON-PERTURBATIVE
          TREATMENT ........................................... 261
        V.5.1  General expression ............................. 261
        V.5.2  Illustrative results ........................... 263
     V.6  CONCLUSION .......................................... 265
  APPENDIX
     V.A  The water vapor continuum ........................... 266
        1. Definition, properties and semi-empirical modeling
           of the H2O continuum ............................... 268
        2. On the origin of the water vapor continua .......... 269
        3. The self- and N2-broadened continua within the V2
           band ............................................... 271
        4. Conclusion ......................................... 272

VI   COLLISION-INDUCED ABSORPTION AND LIGHT SCATTERING ........ 275
     VI.1  INTRODUCTION ....................................... 275
     VI.2  COLLISION-INDUCED DIPOLES AND POLARIZABILITIES FOR
           DIATOMIC MOLECULES ................................. 276
     VI.3  COLLISION-INDUCED SPECTRA IN THE ISOTROPIC
           APPROXIMATION ...................................... 277
        VI.3.1  Two illustrative examples: H2 and N2 .......... 277
        VI.3.2  Modeling of the line shape .................... 281
     VI.4  EFFECTS OF THE ANISOTROPY OF THE INTERACTION
           POTENTIAL .......................................... 284
     VI.5  THE IMPORTANCE OF BOUND AND QUASIBOUND STATES IN
           CIA SPECTRA ........................................ 290
     VI.6  INTERFERENCE BETWEEN PERMANENT AND INDUCED 
           DIPOLES (CIA) OR POLARIZABILITIES (CILS) ........... 293
        VI.6.1  Depolarized light scattering spectra of H2
           and N2 ............................................. 294
        VI.6.2  The HD problem ................................ 296
        VI.6.3  Intercollisional dips ......................... 300
     VI.7  CONCLUSION ......................................... 301

VII  CONSEQUENCES FOR APPLICATIONS ............................ 303
     VII.1  INTRODUCTION ...................................... 303
     VII.2  BASIC EQUATIONS ................................... 304
        VII.2.1  Radiative heat transfer ...................... 304
        VII.2.2  Remote sensing ............................... 307
     VII.3  ISOLATED LINES .................................... 311
        VII.3.1  The basic Lorentz and Voigt profiles ......... 311
        VII.3.2  More refined isolated line profiles .......... 314
     VII.4  LINE MIXING WITHIN CLUSTERS OF LINES .............. 318
     VII.5  ALLOWED BAND WINGS AND CIA ........................ 325
        VII.5.1  Allowed band wings ........................... 325
        VII.5.2  Collision-induced absorption ................. 331
     VII.6  CONCLUSION ........................................ 333

VIII TOWARD FUTURE RESEARCHES ................................. 335
     VIII.l INTRODUCTION ...................................... 335
     VIII.2  DICKE NARROWING IN SPEED-DEPENDENT LINE-MIXING
             PROFILES ......................................... 335
        VIII.2.1   Models of profiles in the hard collision
             frame ............................................ 335
        VIII.2.2  Experimental tests in multiplet spectra ..... 339
     VIII.3  FROM RESONANCES TO THE FAR WINGS ................. 343
        VIII.3.1  Semi-classical approach ..................... 344
        VIII.3.2  Generalized scaling approach ................ 348
     VIII.4  TOMORROW'S SPECTROSCOPIC DATABASES ............... 348
        VIII.4.1  Isolated lines .............................. 349
        VIII.4.2  Line mixing ................................. 351
        VIII.4.3  Far-wings and collision-induced absorption .. 352
     VIII.5  CONCLUSION ....................................... 354
  APPENDIX .................................................... 357

ABBREVLVTIONS AND ACRONYMS .................................... 357
SYMBOLS ....................................................... 360
UNITS AND CONVERSIONS ......................................... 362
REFERENCES .................................................... 365
SUBJECT INDEX ................................................. 409


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  Пожелания и письма: branch@gpntbsib.ru
© 1997-2024 Отделение ГПНТБ СО РАН (Новосибирск)
Статистика доступов: архив | текущая статистика
 

Документ изменен: Wed Feb 27 14:28:10 2019. Размер: 15,818 bytes.
Посещение N 1510 c 22.12.2015