Morkoc H. Nitride semiconductor devices: fundamentals and applications (Weinheim, 2013). - ОГЛАВЛЕНИЕ / CONTENTS

Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаMorkoc H. Nitride semiconductor devices: fundamentals and applications. - Weinheim: Wiley-VCH, 2013. - xiv, 460 p.: ill. - Bibliogr. at the end of the chapters. - Ind.: p.449-460. - ISBN 978-3-527-41101-6
 

Место хранения: 02 | Отделение ГПНТБ СО РАН | Новосибирск

Оглавление / Contents
 
Preface ...................................................... XIII

1    General Properties of Nitrides ............................. 1
1.1  Crystal Structure of Nitrides .............................. 1
1.2  Gallium Nitride ............................................ 5
1.3  Aluminum Nitride ........................................... 6
1.4  Indium Nitride ............................................ 10
1.5  AlGaN Alloy ............................................... 13
1.6  InGaN Alloy ............................................... 14
1.7  AlInN Alloy ............................................... 14
1.8  InAlGaN Quaternary Alloy .................................. 15
1.9  Electronic Band Structure and Polarization Effects ........ 15
     1.9.1  Introduction ....................................... 18
     1.9.2  General Strain Considerations ...................... 22
     1.9.3  k-p Theory and the Quasicubic Model ................ 23
     1.9.4  Temperature Dependence of Wurtzite GaN Bandgap ..... 26
     1.9.5  Sphalerite (Zincblende) GaN ........................ 26
     1.9.6  A1N ................................................ 28
       1.9.6.1  Wurtzite AlN ................................... 28
       1.9.6.2  Zincblende AlN ................................. 28
     1.9.7  InN ................................................ 29
1.10 Polarization Effects ...................................... 31
     1.10.1 Piezoelectric Polarization ......................... 32
     1.10.2 Spontaneous Polarization ........................... 35
     1.10.3 Nonlinearity of Polarization ....................... 35
       1.10.3.1 Nonlinearities in Piezoelectric Polarization ... 42
     1.10.4 Polarization in Heterostructures ................... 46
       1.10.4.1 Ga-Polarity Single AlGaN-GaN Interface ......... 51
       1.10.4.2 Polarization in Quantum Wells .................. 56
1.11 Nonpolar and Semipolar Orientations ....................... 59
     Further Reading ........................................... 61

2    Doping: Determination of Impurity and Carrier 
     Concentrations ............................................ 63
2.1  Introduction .............................................. 63
2.2  Doping .................................................... 63
2.3  Formation Energy of Defects ............................... 65
     2.3.1  Hydrogen and Impurity Trapping at Extended 
            Defects ............................................ 67
2.4  Doping Candidates ......................................... 69
2.5  Free Carriers ............................................. 70
2.6  Binding Energy ............................................ 70
2.7  Conductivity Type: Hot Probe and Hall Measurements ........ 71
2.8  Measurement of Mobility ................................... 71
2.9  Semiconductor Statistics, Density of States, and Carrier 
     Concentration ............................................. 74
2.10 Charge Balance Equation and Carrier Concentration ......... 78
     2.10.1  n-Type Semiconductor .............................. 79
     2.10.2  p-Type Semiconductor .............................. 84
2.11 Capacitance-Voltage Measurements .......................... 87
     Appendix 2.A. Fermi Integral .............................. 94
     Further Reading ........................................... 95

3    Metal Contacts ............................................ 97
3.1  Metal-Semiconductor Band Alignment ........................ 97
3.2  Current Flow in Metal-Semiconductor Junctions ............ 101
3.3  Ohmic Contact Resistance ................................. 107
     3.3.1  Specific Contact Resistivity ...................... 107
3.4  Semiconductor Resistance ................................. 108
     3.4.1  Determination of the Contact Resistivity .......... 109
     Further Reading .......................................... 113

4    Carrier Transport ........................................ 115
4.1  Introduction ............................................. 115
4.2  Carrier Scattering ....................................... 117
     4.2.1  Impurity Scattering ............................... 118
     4.2.2  Acoustic Phonon Scattering ........................ 120
       4.2.2.1  Deformation Potential Scattering .............. 121
       4.2.2.2  Piezoelectric Scattering ...................... 124
     4.2.3  Optical Phonon Scattering ......................... 126
       4.2.3.1  Nonpolar Optical Phonon Scattering ............ 126
       4.2.3.2  Polar Optical Phonon Scattering ............... 127
     4.2.4  Alloy Scattering and Dislocation Scattering ....... 134
4.3  Calculated Mobility of GaN ............................... 143
4.4  Scattering at High Fields ................................ 147
     4.4.1  Transport at High Fields: Energy and Momentum 
            Relaxation Times .................................. 152
     4.4.2  Energy-Dependent Relaxation Time and Large В ...... 153
     4.4.3  Hall Factor ....................................... 155
4.5  Delineation of Multiple Conduction Layer Mobilities ...... 156
4.6  Carrier Transport in InN ................................. 158
4.7  Carrier Transport in AlN ................................. 159
4.8  Carrier Transport in Alloys .............................. 161
4.9  Two-Dimensional Transport in n-Type GaN .................. 164
     4.9.1  Scattering in 2D Systems .......................... 166
       4.9.1.1  Electron Mobility in AlGaN/GaN 2D System ...... 168
       4.9.1.2  Numerical Two-Dimensional Electron Gas 
                Mobility Calculations ......................... 170
       4.9.1.3  Magnetotransport and Mobility Spectram ........ 173
                Further Reading ............................... 174

5    The p-n junction ......................................... 177
5.1  Introduction ............................................. 177
5.2  Band Alignment ........................................... 177
5.3  Electrostatic Characteristics of p-n Heterojunctions ..... 179
5.4  Current-Voltage Characteristics of p-n Junctions ......... 185
     5.4.1  Diode Current under Reverse Bias .................. 186
       5.4.1.1  Poole-Frenkel and Schottky Effects ............ 187
       5.4.1.2  Avalanching ................................... 188
     5.4.2  Diffusion Current ................................. 189
       5.4.2.1  Diffusion Current under Reverse Bias .......... 190
       5.4.2.2  Diffusion Current under Forward Bias .......... 190
     Further Reading .......................................... 191

6    Optical Processes ........................................ 193
6.1  Introduction ............................................. 193
6.2  Einstein's A and В Coefficients .......................... 194
6.3  Absorption and Emission .................................. 196
6.4  Band-to-Band Transitions and Efficiency .................. 198
6.5  Optical Transitions in GaN ............................... 200
     6.5.1  Excitonic Transitions in GaN ...................... 200
       6.5.1.1  Strain Effects ................................ 203
       6.5.1.2  Bound Excitons ................................ 204
6.6  Free-to-Bound Transitions ................................ 205
6.7  Donor-Acceptor Transitions ............................... 206
     Further Reading .......................................... 207

7    Light-Emitting Diodes and Lighting ....................... 209
7.1  Introduction ............................................. 209
7.2  Current Conduction Mechanism in LED-Like Structures ...... 211
7.3  Optical Output Power and Efficiency ...................... 214
     7.3.1  Efficiency and Other LED Relevant Terms ........... 215
     7.3.2  Optical Power and External Efficiency ............. 217
     7.3.3  Internal Quantum Efficiency ....................... 218
       7.3.3.1  Auger Recombination ........................... 219
       7.3.3.2  SRH Recombination ............................. 220
       7.3.3.3  Radiative Recombination ....................... 222
       7.3.3.4  Continuity or Rate Equations as Pertained to
                Efficiency .................................... 223
       7.3.3.5  Carrier Overflow (Spillover, Flyover, 
                Leakage) ...................................... 231
7.4  Effect of Surface Recombination .......................... 244
7.5  Effect of Threading Dislocation on LEDs .................. 247
7.6  Current Crowding ......................................... 247
7.7  Perception of Color ...................................... 250
7.8  Chromaticity Coordinates and Color Temperature ........... 251
7.9  LED Degradation .......................................... 253
7.10 Packaging ................................................ 255
7.11 Luminescence Conversion and White Light Generation ....... 257
     7.11.1  Color-Rendering Index ............................ 258
     7.11.2  White Light from Multichip LEDs .................. 259
     7.11.3  Combining LEDs and Phosphor(s) ................... 262
     Further Reading .......................................... 266

8    Semiconductor Lasers: Light Amplification by Stimulated 
     Emission of Radiation .................................... 267
8.1  Introduction ............................................. 267
8.2  A Primer to the Principles of Lasers ..................... 268
     8.2.1  Waveguiding ....................................... 270
     8.2.2  Analytical Solution to the Waveguide Problem ...... 273
            8.2.2.1  ТЕ Mode .................................. 274
            8.2.2.2  TM Mode .................................. 276
     8.2.3  Far-Field Pattern ................................. 280
8.3  Loss, Threshold, and Cavity Modes ........................ 281
8.4  Optical Gain ............................................. 283
8.5  A Glossary for Semiconductor Lasers ...................... 286
     8.5.1  Optical Gain in Bulk Layers: a Semiconductor 
            Approach .......................................... 289
       8.5.1.1  Relating Absorption Rate to Absorption 
                Coefficient ................................... 290
       8.5.1.2  Relating Stimulated Emission Rate to
                Absorption Coefficient ........................ 290
       8.5.1.3  Relating Spontaneous Emission Rate to
                Absorption Coefficient ........................ 290
     8.5.2  Semiconductor Realm ............................... 291
     8.5.3  Gain in Quantum Wells ............................. 299
       8.5.3.1  Optical Gain .................................. 302
       8.5.3.2  Measurement of Gain in Nitride Lasers ......... 304
     8.5.4  Gain Measurement via Optical Pumping .............. 304
8.6  Threshold Current ........................................ 306
8.7  Analysis of Injection Lasers with Simplifying 
     Assumptions .............................................. 307
     8.7.1  Recombination Lifetime ............................ 309
     8.7.2  Quantum Efficiency ................................ 311
8.8  GaN-Based LD Design and Performance ...................... 312
     8.8.1  Gain Spectra of InGaN Injection Lasers ............ 317
     8.8.2  Mode Hopping ...................................... 321
8.9  Thermal Resistance ....................................... 322
8.10 Nonpolar and Semipolar Orientations ...................... 323
8.11 Vertical Cavity Surface-Emitting Lasers (VCSELs) ......... 325
     8.11.1 Microcavity Fundamentals .......................... 328
     8.11.2 Polariton Lasers .................................. 333
8.12 Degradation .............................................. 337
     Appendix 8.A: Determination of the Photon Density and
     Photon Energy Density in a Cavity ........................ 343
     Further Reading .......................................... 348

9    Field Effect Transistors ................................. 349
9.1  Introduction ............................................. 349
9.2  Operation Principles of Heterojunction Field Effect 
     Transistors .............................................. 350
     9.2.1  Heterointerface Charge ............................ 350
     9.2.2  Analytical Description of HFETs ................... 358
9.3  GaN and InGaN Channel HFETs .............................. 364
9.4  Equivalent Circuit Models: De-embedding and Cutoff 
     Frequency ................................................ 366
     9.4.1  Small-Signal Equivalent Circuit Modeling .......... 367
     9.4.2  Cutoff Frequency .................................. 370
9.5  HFET Amplifier Classification and Efficiency ............. 373
9.6  Drain Voltage and Drain Breakdown Mechanisms ............. 378
9.7  Field Plate for Spreading Electric Field for Increasing 
     Breakdown Voltage ........................................ 383
9.8  Anomalies in GaN MESFETs and AlGaN/GaN HFETs ............. 384
     9.8.1  Effect of the Traps in the Buffer Layer ........... 386
     9.8.2  Effect of Barrier States .......................... 392
     9.8.3  Correlation between Current Collapse and Surface 
            Charging .......................................... 393
9.9  Electronic Noise ......................................... 396
     9.9.1  FET Equivalent Circuit with Noise ................. 398
     9.9.2  High-Frequency Noise in Conjunction with GaN
            FETs .............................................. 402
9.10 Self-Heating and Phonon Effects .......................... 405
     9.10.1 Heat Dissipation and Junction Temperature ......... 406
     9.10.2 Hot Phonon Effects ................................ 409
       9.10.2.1  Phonon Decay Channels and Decay Time ......... 411
       9.10.2.2  Implications for FETs ........................ 416
       9.10.2.3  Heat Removal in View of Hot Phonons .......... 418
       9.10.2.4  Tuning of the Hot Phonon Lifetime ............ 421
9.11 HFET Degradation ......................................... 427
     9.11.1 Gated Structures: Reliability ..................... 434
     9.11.2 Reliability Tests ................................. 438
9.12 HFETs for High-Power Switching ........................... 440
     Appendix 9.A. Sheet Charge Calculation in AlGaN/GaN 
     Structures with A1N Interface Layer (AlGaN/AlN/GaN) ...... 444
     Further Reading .......................................... 446

Index ......................................................... 449


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 


[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск | English]
  Пожелания и письма: www@prometeus.nsc.ru
© 1997-2019 Отделение ГПНТБ СО РАН (Новосибирск)
Статистика доступов: архив | текущая статистика
 

Документ изменен: Wed Feb 27 14:28:00 2019. Размер: 18,437 bytes.
Посещение N 727 c 17.11.2015