Smith R.C. Uncertainty quantification: theory, implementation, and applications (Philadelphia, 2014). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаSmith R.C. Uncertainty quantification: theory, implementation, and applications. - Philadelphia: SIAM, 2014. - xv, 382 p.: ill. - (Computational science & engineering). - Bibliogr.: p.353-372. - Ind.: p.373-382. - ISBN 978-1-611973-21-1
 

Место хранения: 02 | Отделение ГПНТБ СО РАН | Новосибирск

Оглавление / Contents
 
Preface ........................................................ ix
Notation ..................................................... xiii
Acronyms and Initialisms ..................................... xvii
1  Introduction ................................................. 1
   1.1  Nature of Uncertainties and Errors ...................... 4
   1.2  Predictive Estimation ................................... 8
2  Large-Scale Applications .................................... 11
   2.1  Weather Models ......................................... 11
   2.2  Climate Models ......................................... 21
   2.3  Subsurface Hydrology and Geology ....................... 33
   2.4  Nuclear Reactor Design ................................. 36
   2.5  Biological Models ...................................... 44
3  Prototypical Models ......................................... 51
   3.1  Models ................................................. 51
   3.2  Evolution, Stationary, and Algebraic Models ............ 61
   3.3  Abstract Modeling Framework ............................ 63
   3.4  Notation for Parameters and Inputs ..................... 65
   3.5  Exercises .............................................. 66
4  Fundamentals of Probability, Random Processes, and
   Statistics .................................................. 67
   4.1  Random Variables, Distributions, and Densities ......... 67
   4.2  Estimators, Estimates, and Sampling Distributions ...... 79
   4.3  Ordinary Least Squares and Maximum Likelihood
        Estimators ............................................. 82
   4.4  Modes of Convergence and Limit Theorems ................ 85
   4.5  Random Processes ....................................... 87
   4.6  Markov Chains .......................................... 90
   4.7  Random versus Stochastic Differential Equations ........ 96
   4.8  Statistical Inference .................................. 98
   4.9  Notes and References .................................. 104
   4.10 Exercises ............................................. 105
5  Representation of Random Inputs ............................ 107
   5.1  Mutually Independent Random Parameters ................ 107
   5.2  Correlated Random Parameters .......................... 108
   5.3  Finite-Dimensional Representation of Random
        Coefficients .......................................... 109
   5.4  Exercises ............................................. 112
6  Parameter Selection Techniques ............................. 113
   6.1  Linearly Parameterized Problems ....................... 115
   6.2  Nonlinearly Parameterized Problems .................... 122
   6.3  Parameter Correlation versus Identifiability .......... 125
   6.4  Notes and References .................................. 127
   6.5  Exercises ............................................. 128
7  Frequentist Techniques for Parameter Estimation ............ 131
   7.1  Parameter Estimation from a Frequentist Perspective ... 133
   7.2  Linear Regression ..................................... 134
   7.3  Nonlinear Parameter Estimation Problem ................ 141
   7.4  Notes and References .................................. 152
   7.5  Exercises ............................................. 153
8  Bayesian Techniques for Parameter Estimation ............... 155
   8.1  Parameter Estimation from a Bayesian Perspective ...... 155
   8.2  Markov Chain Monte Carlo (MCMC) Techniques ............ 159
   8.3  Metropolis and Metropolis-Hastings Algorithms ......... 159
   8.4  Stationary Distribution and Convergence Criteria ...... 168
   8.5  Parameter Identifiability ............................. 171
   8.6  Delayed Rejection Adaptive Metropolis (DRAM) .......... 172
   8.7  DiffeRential Evolution Adaptive Metropolis (DREAM) .... 181
   8.8  Notes and References .................................. 184
   8.9  Exercises ............................................. 184
9  Uncertainty Propagation in Models .......................... 187
   9.1  Direct Evaluation for Linear Models ................... 188
   9.2  Sampling Methods ...................................... 191
   9.3  Perturbation Methods .................................. 192
   9.4  Prediction Intervals .................................. 197
   9.5  Notes and References .................................. 203
   9.6  Exercises ............................................. 204
10 Stochastic Spectral Methods ................................ 207
   10.1 Spectral Representation of Random Processes ........... 207
   10.2 Galerkin, Collocation, and Discrete Projection
        Frameworks ............................................ 214
   10.3 Stochastic Galerkin Method—Examples ................... 226
   10.4 Discrete Projection Method—Example .................... 234
   10.5 Stochastic Polynomial Packages ........................ 235
   10.6 Exercises ............................................. 236
11 Sparse Grid Quadrature and Interpolation Techniques ........ 239
   11.1 Quadrature Techniques ................................. 239
   11.2 Interpolating Polynomials for Collocation ............. 250
   11.3 Sparse Grid Software .................................. 254
   11.4 Exercises ............................................. 255
12 Prediction in the Presence of Model Discrepancy ............ 257
   12.1 Effects of Unaccommodated Model Discrepancy ........... 261
   12.2 Incorporation of Missing Physical Mechanisms .......... 263
   12.3 Techniques to Quantify Model Errors ................... 265
   12.4 Issues Pertaining to Model Discrepancy
        Representations ....................................... 267
   12.5 Notes and References .................................. 269
   12.6 Exercises ............................................. 269
13 Surrogate Models ........................................... 271
   13.1 Regression or Interpolation-Based Models .............. 273
   13.2 Projection-Based Models ............................... 280
   13.3 Eigenfunction or Modal Expansions ..................... 283
   13.4 Snapshot-Based Methods including POD .................. 284
   13.5 High-Dimensional Model Representation (HDMR)
        Techniques ............................................ 289
   13.6 Surrogate-Based Bayesian Model Calibration ............ 298
   13.7 Notes and References .................................. 299
   13.8 Exercises ............................................. 300
14 Local Sensitivity Analysis ................................. 303
   14.1 Motivating Examples—Neutron Diffusion ................. 306
   14.2 Functional Analytic Framework for FSAP and ASAP ....... 312
   14.3 Notes and References .................................. 318
   14.4 Exercises ............................................. 319
15 Global Sensitivity Analysis ................................ 321
   15.1 Variance-Based Methods ................................ 323
   15.2 Morris Screening ...................................... 331
   15.3 Time- or Space-Dependent Responses .................... 337
   15.4 Notes and References .................................. 343
   15.5 Exercises ............................................. 344
A  Concepts from Functional Analysis .......................... 345
   A.l  Exercises ............................................. 351

Bibliography .................................................. 353

Index ......................................................... 373


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:27:08 2019. Размер: 11,389 bytes.
Посещение N 1903 c 02.12.2014