Stochastic ferromagnetism: analysis and numerics (Berlin, 2014). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаStochastic ferromagnetism: analysis and numerics / L.Banas et al. - Berlin: de Gruyter, 2014. - vi, 242 p.: ill. - (de Gruyter studies in mathematics; 58). - Bibliogr.: p.236-242. - ISBN 978-3-11-030699-6; ISSN 0179-0986
 

Место хранения: 02 | Отделение ГПНТБ СО РАН | Новосибирск

Оглавление / Contents
 
1    The role of noise in finite ensembles of nanomagnetic
     particles .................................................. 7
1.1  Preliminaries ............................................. 11
     1.1.1  Geometric ergodicity of Markov chains .............. 11
     1.1.2  Ergodicity with rates for solutions of SDEs ........ 21
     1.1.3  Convergent discretizations of the deterministic
            LLG equation ....................................... 24
1.2  Exponential Ergodicity and Asymptotic Rates ............... 33
     1.2.1  Low-dimensional noise for finitely many
            interacting spins .................................. 33
     1.2.2  High-dimensional noise for finitely many
            interacting spins .................................. 39
     1.2.3  L2-ergodicity with rate ............................ 48
     1.2.4  Penalization with multiplicative noise ............. 51
1.3  Discretizations of the stochastic Landau-Lifshitz-
     Gilbert equation .......................................... 67
     1.3.1  A structure-preserving discretization of (1.36):
            the geometric exponential ergodicity ............... 67
     1.3.2  Strong Convergence of Scheme 1.11 .................. 74
     1.3.3  A linear implicit discretization scheme ............ 79
1.4  Computational studies ..................................... 85
     1.4.1  Numerical schemes .................................. 86
     1.4.2  Long-time dynamics ................................. 93
     1.4.3  Interplay of penalization and noise ................ 98

2    The stochastic Landau-Lifshitz-Gilbert equation .......... 103
2.1  Preliminaries ............................................ 106
     2.1.1  Finite elements and temporal discretization ....... 106
     2.1.2  Fractional Sobolev spaces and related compact
            embeddings ........................................ 111
     2.1.3  Young integral .................................... 114
     2.1.4  Wiener process and the approximating random walk .. 115
     2.1.5  Convergence of random variables and
            representation theorems ........................... 117
     2.1.6  Stability of solutions of the Landau-Lifshitz-
            Gilbert equation .................................. 123
2.2  Convergent discretization of SLLG ........................ 129
     2.2.1  Unconditional Stability of Scheme 2.9 ............. 138
     2.2.2  Convergence of iterates from Scheme 2.9 ........... 155
     2.2.3  Existence of a solution to the SLLG equation ...... 163
     2.2.4  A convergent discretization of the SLLG equation
            which uses random walks ........................... 176
2.3  Computational studies .................................... 186
     2.3.1  Numerical implementation .......................... 186
     2.3.2  Effects of the space-time white noise in 1D and
            2D ................................................ 188
     2.3.3  Discrete blow-up of the SLLG equation with
            space-time white noise ............................ 190

3    Effective equations for macrospin magnetization
     dynamics ................................................. 196
3.1  Construction of local strong solutions for the
     augmented LLG ............................................ 200
3.2  Convergence with optimal rates for Scheme A .............. 207
3.3  Construction of a weak solutions via Scheme 3.5 .......... 209
     3.3.1  Solving the nonlinear system in Scheme 3.5 ........ 216
3.4  Computational experiments ................................ 220
     3.4.1  μMag standard problem no. 4 with thermal
            effects ........................................... 220
     3.4.2  Comparison of the macroscopic model with the
            SLLG equation ..................................... 225

Bibliography .................................................. 236


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:27:06 2019. Размер: 7,555 bytes.
Посещение N 1281 c 25.11.2014