Kresin V.Z. Superconducting state: mechanisms and properties (Oxford, 2014). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаKresin V.Z. Superconducting state: mechanisms and properties / V.Z.Kresin, H.Morawitz, S.A.Wolf. - Oxford: Oxford univ. press, 2014. - xiii, 261 p.: ill. - (International series of monographs on physics; 161). - Bibliogr.: p.233-254. - Ind.: p.254-261. - ISBN 978-0-19-965255-6
 

Место хранения: 02 | Отделение ГПНТБ СО РАН | Новосибирск

Оглавление / Contents
 
1    Historical perspective ..................................... 1
2    Electronic states, phonons, and electron-phonon
     interaction ................................................ 5
2.1  Adiabatic approximation: Hamiltonian ....................... 5
2.2  Adiabatic approximation and non-adiabaticity: Born-
     Oppenheimer and "crude" approaches ......................... 6
2.3  Electron-phonon coupling ................................... 9
2.4  Electron-phonon interaction and renormalization of normal
     parameters ................................................ 11
2.5  The "Migdal" theorem ...................................... 15
2.6  Polaronic states .......................................... 16
     2.6.1  Concept ............................................ 16
     2.6.2  Dynamic polaron .................................... 17

3    Phonon mechanism .......................................... 20
3.1  Superconductivity as a "giant" non-adiabatic phenomenon ... 20
3.2  The BCS model ............................................. 21
3.3  Phonon mechanism: main equations .......................... 22
3.4  Critical temperature ...................................... 26
     3.4.1  Weak coupling ...................................... 26
     3.4.2  Intermediate coupling (λ fig.19 1.5) ................... 28
     3.4.3  Coulomb interaction ................................ 29
     3.4.4  Very strong coupling ............................... 31
     3.4.5  The general case ................................... 33
     3.4.6  About an upper limit of Tc ......................... 35
3.5  Properties of superconductors with strong coupling ........ 36
3.6  The Van Hove scenario ..................................... 39
3.7  Bipolarons: ВЕС versus BCS ................................ 39
3.8  Superconducting semiconductors ............................ 40
3.9  Polaronic effect and its impact on Tc ..................... 42
     3.9.1  Double-well structure .............................. 42
     3.9.2  Superconducting state .............................. 44

4    Electronic mechanisms ..................................... 47
4.1  The Little model .......................................... 47
4.2  "Sandwich" excitonic mechanism ............................ 50
4.3  Three-dimensional systems: electronic mechanism ........... 50
4.4  Plasmons .................................................. 52
     4.4.1  Plasmons in layered systems: dispersion  law
            and "electronic sound" ............................. 53
     4.4.2  Plasmons in layered conductors: pairing ............ 57
     4.4.3  The 3D case: "demons" .............................. 58

5    Magnetic mechanism ........................................ 59
5.1  Introduction .............................................. 59
     5.1.1  Localized versus itinerant aspects of the
            cuprates ........................................... 60
5.2  Fermi liquid-based theories ............................... 62
     5.2.1  The spin-bag model of Schrieffer, Wen, and Zhang
            (1989) ............................................. 62
     5.2.2  The t-J model (Emery, 1987; Zhang and Rice, 1988) .. 66
     5.2.3  Two-dimensional Hubbard model studies by Monte
            Carlo techniques ................................... 70
     5.2.4  Spiral phase of a doped quantum antiferromagnet
            (Shraiman and Siggia, 1988-89) ..................... 77
     5.2.5  Slave bosons ....................................... 82
5.3  Non-Fermi-liquid models ................................... 85
     5.3.1  The resonant valence bond (RVB) model and its
            evolution .......................................... 85
     5.3.2  Anyon models and fractional statistics ............. 86
5.4  Conclusions ............................................... 87

6    Experimental methods: Spectroscopic ....................... 88
6.1  Tunneling spectroscopy .................................... 88
     6.1.1  Experimental method ................................ 88
     6.1.2  Energy gap and transition temperature .............. 90
     6.1.3  Inversion of the gap equation and α2F(Ω) ........... 91
     6.1.4  Electron-phonon coupling parameter λ ............... 94
6.2  Scanning tunneling microscopy and spectroscopy ............ 96
6.3  Infrared spectroscopy ..................................... 97
6.4  Ultrasonic attenuation .................................... 99
6.5  Angle-resolved photoemission ............................. 100
6.6  Muon spin resonance (μtSR) ............................... 100
     6.6.1  μSR studies of superconductivity .................. 102

7    Multigap superconductivity ............................... 103
7.1  Multigap superconductivity: general picture .............. 103
7.2  Critical temperature ..................................... 104
7.3  Energy spectrum .......................................... 105
7.4  Properties of two-gap superconductors .................... 108
     7.4.1  Penetration depth; surface resistance ............. 108
     7.4.2  Strong magnetic field: Ginzburg-Landau equations
            for a multigap superconductor ..................... 110
     7.4.3  Heat capacity ..................................... 111
     7.4.4  Experimental data ................................. 111
7.5  Induced two-band superconductivity ....................... 112
7.6  Symmetry of the order parameter and multiband
     superconductor ........................................... 113

8    Induced superconductivity: proximity effect .............. 114
8.1  Proximity "sandwich" ..................................... 114
8.2  Critical temperature ..................................... 115
8.3  Proximity effect versus the two-gap model ................ 119
8.4  Pair-breaking: gapless superconductivity ................. 119

9    Isotope effect ........................................... 122
9.1  General remarks .......................................... 122
9.2  Coulomb pseudopotential .................................. 122
9.3  Multi-component lattice .................................. 123
9.4  Anharmonicity ............................................ 123
9.5  Isotope effect in proximity systems ...................... 124
9.6  Magnetic impurities and isotope effect ................... 125
9.7  Polaronic effect and isotope substitution ................ 126
9.8  Penetration depth: isotopic dependence ................... 128

10   Cuprate superconductors .................................. 131
10.1 History .................................................. 131
10.2 Structure of the cuprates ................................ 132
10.3 Preparation of bulk and film cuprates .................... 133
10.4 Properties of the cuprates ............................... 134
     10.4.1 Phase diagram ..................................... 134
     10.4.2 Critical field Hc2 ................................ 135
     10.4.3 Two-gap spectrum .................................. 136
     10.4.4 Symmetry of the order parameter ................... 136
10.5 Isotope effect ........................................... 138
     10.5.1 Polaronic state ................................... 138
     10.5.2 Isotopic dependence of the penetration depth ...... 140
10.6 Mechanism of high Tc ..................................... 140
10.7 Proposed experiment ...................................... 145

11   Inhomogeneous superconductivity and the "pseudogap"
     state of novel superconductors ........................... 147
11.1 "Pseudogap" state: main properties ....................... 148
     11.1.1 Anomalous diamagnetism above Tc ................... 148
     11.1.2 Energy gap ........................................ 150
     11.1.3 Isotope effect .................................... 152
     11.1.4 "Giant" Josephson effect .......................... 152
     11.1.5 Transport properties .............................. 153
11.2 Inhomogeneous state ...................................... 154
     11.2.1 Qualitative picture ............................... 154
     11.2.2 The origin of inhomogeneity ....................... 155
     11.2.3 Percolative transition ............................ 156
     11.2.4 Inhomogeneity: experimental data .................. 156
11.3 Energy scales ............................................ 157
     11.3.1 Highest-energy scale (T*) ......................... 158
     11.3.2 Diamagnetic transition (Tc*) ...................... 158
     11.3.3 Resistive transition (Tc) ......................... 159
11.4 Theory ................................................... 159
     11.4.1 General equations ................................. 160
     11.4.2 Diamagnetism ...................................... 160
     11.4.3 Transport properties; "giant" Josephson effect .... 162
     11.4.4 Isotope effect .................................... 166
11.5 Other systems ............................................ 167
     11.5.1 Borocarbides ...................................... 167
     11.5.2 Granular superconductors; Pb+Ag system ............ 167
11.6 Ordering of dopants and potential for room-temperature
     superconductivity ........................................ 168
11.7 Remarks .................................................. 171

12   Manganites ............................................... 172
12.1 Introduction ............................................. 172
12.2 Electronic structure and doping .......................... 173
     12.2.1 Structure ......................................... 173
     12.2.2 Magnetic order .................................... 176
     12.2.3 Double-exchange mechanism ......................... 176
     12.2.4 Colossal magnetoresistance (CMR) .................. 177
12.3 Percolation phenomena .................................... 178
     12.3.1 Low doping: transition to the ferromagnetic
            state at low temperatures ......................... 178
     12.3.2 Percolation threshold ............................. 179
     12.3.3 Increase in temperature and percolative
            transition ........................................ 180
     12.3.4 Experimental data ................................. 181
     12.3.5 Large doping ...................................... 182
12.4 Main interactions: Hamiltonian ........................... 183
12.5 Ferromagnetic metallic state ............................. 184
     12.5.1 Two-band spectrum ................................. 184
     12.5.2 Heat capacity ..................................... 186
     12.5.3 Isotope substitution .............................. 187
     12.5.4 Optical properties ................................ 189
12.6 Insulating phase ......................................... 190
     12.6.1 Parent compound ................................... 190
     12.6.2 Low doping: polarons .............................. 191
     12.7 Metallic A-phase: S-N-S Josephson effect ............ 193
     12.7.1 Magnetic structure ................................ 193
     12.7.2 Josephson contact with the A-phase barrier ........ 193
12.8 Discussion: manganites versus cuprates ................... 195

13   Novel superconducting systems ............................ 197
13.1 Fe-based pnictide and chalcogenide superconductors ....... 197
13.2 Magnesium diboride: MgB2 ................................. 199
13.3 A-15 structure superconductors ........................... 201
13.4 Granular superconductors ................................. 202
13.5 S2RuO4: a very novel superconductor ...................... 203
13.6 Ruthenium cuprates ....................................... 204
13.7 Intercalated nitrides: self-supported superconductivity .. 205

14   Organic superconductivity ................................ 206
14.1 History .................................................. 206
14.2 Organic superconductors: structure, properties ........... 207
14.3 Intercalated materials ................................... 210
14.4 Fьllendes ................................................ 212
14.5 Small-scale organic superconductivity .................... 213
14.6 Pair correlation in aromatic molecules ................... 214

15   Pairing in nanoclusters: nano-based superconducting
     tunneling networks ....................................... 218
15.1 Clusters: shell structure ................................ 218
15.2 Pair correlation ......................................... 220
     15.2.1 Qualitative picture ............................... 220
     15.2.2 Main equations: critical temperature .............. 222
     15.2.3 Energy spectrum; fluctuations ..................... 225
15.3 How to observe the phenomenon? ........................... 226
15.4 Cluster-based tunneling network: macroscopic
     superconductivity ........................................ 227
15.5 Cluster crystals ......................................... 228

Appendices .................................................... 229
   Appendix A: Diabatic representation ........................ 229
   Appendix B: Dynamic Jahn Teller effect ..................... 231
References .................................................... 233
Index ......................................................... 255


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:27:06 2019. Размер: 17,443 bytes.
Посещение N 1591 c 18.11.2014