Wolfram T. Applications of group theory to atoms, molecules, and solids (Cambridge, 2014). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаWolfram T. Applications of group theory to atoms, molecules, and solids / T.Wolfram, Ş.Ellialtioǧlu. - Cambridge: Cambridge univ. press, 2014. - xii, 471 p.: ill. - Incl. bibl. ref. - Ind.: p.465-471. - ISBN 978-1-107-02852-4
 

Место хранения: 02 | Отделение ГПНТБ СО РАН | Новосибирск

Оглавление / Contents
 
Preface ........................................................ xi
1  Introductory example: Squarene ............................... 1
   1.1  In-plane molecular vibrations of squarene ............... 1
   1.2  Reducible and irreducible representations of a group ... 12
   1.3  Eigenvalues and eigenvectors ........................... 27
   1.4  Construction of the force-constant matrix from the
        eigenvalues ............................................ 30
   1.5  Optical properties ..................................... 31
   References .................................................. 34
   Exercises ................................................... 35
2  Molecular vibrations of isotopically substituted АВ2
   molecules ................................................... 39
   2.1  Step 1: Identify the point group and its symmetry
        operations ............................................. 39
   2.2  Step 2: Specify the coordinate system and the basis
        functions .............................................. 39
   2.3  Step 3: Determine the effects of the symmetry
        operations on the basis functions ...................... 41
   2.4  Step 4: Construct the matrix representations for each
        element of the group using the basis functions ......... 41
   2.5  Step 5: Determine the number and types of irreducible
        representations ........................................ 42
   2.6  Step 6: Analyze the information contained in the
        decompositions ......................................... 42
   2.7  Step 7: Generate the symmetry functions ................ 43
   2.8  Step 8: Diagonalize the matrix eigenvalue equation ..... 50
   2.9  Constructing the force-constant matrix ................. 50
   2.10 Green's function theory of isotopic molecular
        vibrations ............................................. 52
   2.11 Results for isotopically substituted forms of H2O ...... 60
        References ............................................. 62
        Exercises .............................................. 62
3  Spherical symmetry and the full rotation group .............. 66
   3.1  Hydrogen-like orbitals ................................. 66
   3.2  Representations of the full rotation group ............. 68
   3.3  The character of a rotation ............................ 72
   3.4  Decomposition of in a non-spherical environment ........ 75
   3.5  Direct-product groups and representations .............. 76
   3.6  General properties of D(l) direct-product groups and
        representations ........................................ 79
   3.7  Selection rules for matrix elements .................... 83
   3.8  General representations of the full rotation group ..... 85
   References .................................................. 88
   Exercises ................................................... 88
4  Crystal-field theory ........................................ 90
   4.1  Splitting of d-orbital degeneracy by a crystal field ... 90
   4.2  Multi-electron systems ................................. 95
   4.3  Jahn-Teller effects ................................... 116
   References ................................................. 119
   Exercises .................................................. 119
5  Electron spin and angular momentum ......................... 123
   5.1  Pauli spin matrices ................................... 123
   5.2  Measurement of spin ................................... 126
   5.3  Irreducible representations of half-integer angular
        momentum .............................................. 127
   5.4  Multi-electron spin-orbital states .................... 129
   5.5  The L-S-coupling scheme ............................... 130
   5.6  Generating angular-momentum eigenstates ............... 132
   5.7  Spin-orbit interaction ................................ 138
   5.8  Crystal double groups ................................. 150
   5.9  The Zeeman effect (weak-magnetic-field case) .......... 153
   References ................................................. 155
   Exercises .................................................. 156
6  Molecular electronic structure: The LCAO model ............. 158
   6.1  N-electron systems .................................... 158
   6.2  Empirical LCAO models ................................. 162
   6.3  Parameterized LCAO models ............................. 163
   6.4  An example: The electronic structure of squarene ...... 168
   6.5  The electronic structure of H2O ....................... 182
        References ............................................ 188
        Exercises ............................................. 189
7  Electronic states of diatomic molecules .................... 193
   7.1  Bonding and antibonding states: Symmetry functions .... 193
   7.2  The "building-up" of molecular orbitals for diatomic
        molecules ............................................. 198
   7.3  Heteronuclear diatomic molecules ...................... 206
        Exercises ............................................. 209
8  Transition-metal complexes ................................. 211
   8.1  An octahedral complex ................................. 211
   8.2  A tetrahedral complex ................................. 227
   References ................................................. 237
   Exercises .................................................. 237
9  Space groups and crystalline solids ........................ 239
   9.1  Definitions ........................................... 239
   9.2  Space groups .......................................... 244
   9.3  The reciprocal lattice ................................ 246
   9.4  Brillouin zones ....................................... 247
   9.5  Bloch waves and symmorphic groups ..................... 249
   9.6  Point-group symmetry of Bloch waves ................... 252
   9.7  The space group of the k-vector, gks ................... 258
   9.8  Irreducible representations of gks ..................... 259
   9.9  Compatibility of the irreducible representations of
        gk .................................................... 260
   9.10 Energy bands in the plane-wave approximation .......... 265
   References ................................................. 276
   Exercises .................................................. 276
10 Application of space-group theory: Energy bands for the
   perovskite structure ....................................... 280
   10.1 The structure of the ABO3 perovskites ................. 280
   10.2 Tight-binding wavefunctions ........................... 282
   10.3 The group of the wavevector, gk ....................... 283
   10.4 Irreducible representations for the perovskite
        energy bands .......................................... 284
   10.5 LCAO energies for arbitrary k ......................... 298
   10.6 Characteristics of the perovskite bands ............... 300
   References ................................................. 301
   Exercises .................................................. 302
11 Applications of space-group theory: Lattice vibrations ..... 304
   11.1 Eigenvalue equations for lattice vibrations ........... 305
   11.2 Acoustic-phonon branches .............................. 309
   11.3 Optical branches: Two atoms per unit cell ............. 314
   11.4 Lattice vibrations for the perovskite structure ....... 320
   11.5 Localized vibrations .................................. 327
   References ................................................. 334
   Exercises .................................................. 334
12 Time reversal and magnetic groups .......................... 337
   12.1 Time reversal in quantum mechanics .................... 337
   12.2 The effect of T on an electron wavefunction ........... 340
   12.3 Time reversal with an external field .................. 341
   12.4 Time-reversal degeneracy and energy bands ............. 342
   12.5 Magnetic crystal groups ............................... 346
   12.6 Co-representations for groups with time-reversal
        operators ............................................. 350
   12.7 Degeneracies due to time-reversal symmetry ............ 357
   References ................................................. 361
   Exercises .................................................. 361
13 Graphene ................................................... 363
   13.1 Graphene structure and energy bands ................... 363
   13.2 The analogy with the Dirac relativistic theory for
        massless particles .................................... 368
   13.3 Graphene lattice vibrations ........................... 369
   References ................................................. 381
   Exercises .................................................. 381
   14 Carbon nanotubes ........................................ 383
   14.1 A description of carbon nanotubes ..................... 384
   14.2 Group theory of nanotubes ............................. 386
   14.3 One-dimensional nanotube energy bands ................. 393
   14.4 Metallic and semiconducting nanotubes ................. 401
   14.5 The nanotube density of states ........................ 403
   14.6 Curvature and energy gaps ............................. 406
   References ................................................. 407
   Exercises .................................................. 407
   Appendix A  Vectors and matrices ........................... 410
   Appendix В  Basics of point-group theory ................... 415
   Appendix С  Character tables for point groups .............. 430
   Appendix D  Tensors, vectors, and equivalent electrons ..... 442
   Appendix E  The octahedral group, О and Оh ................. 449
   Appendix F  The tetrahedral group, Td ...................... 455
   Appendix G  Identifying point groups ....................... 462

Index ......................................................... 465


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:27:04 2019. Размер: 14,057 bytes.
Посещение N 1555 c 11.11.2014