Classical geometry: euclidean, transformational, inversive, and projective (Hoboken, 2014). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаClassical geometry: euclidean, transformational, inversive, and projective / I.E.Leonard et al. - Hoboken: Wiley, 2014. - xii, 479 p.: ill. - Bibliogr.: p.466-471. - Ind.: p.473-479. - ISBN 978-1-118-67919-7
 

Место хранения: 02 | Отделение ГПНТБ СО РАН | Новосибирск

Оглавление / Contents
 
Preface ........................................................ xi

PART I  EUCLIDEAN GEOMETRY
1  Congruency ................................................... 3
   1.1  Introduction ............................................ 3
   1.2  Congruent Figures ....................................... 6
   1.3  Parallel Lines ......................................... 12
        1.3.1  Angles in a Triangle ............................ 13
        1.3.2  Thales' Theorem ................................. 14
        1.3.3  Quadrilaterals .................................. 17
   1.4  More About Congruency .................................. 21
   1.5  Perpendiculars and Angle Bisectors ..................... 24
   1.6  Construction Problems .................................. 28
        1.6.1  The Method of Loci .............................. 31
   1.7  Solutions to Selected Exercises ........................ 33
   1.8  Problems ............................................... 38
2  Concurrency ................................................. 41
   2.1  Perpendicular Bisectors ................................ 41
   2.2  Angle Bisectors ........................................ 43
   2.3  Altitudes .............................................. 46
   2.4  Medians ................................................ 48
   2.5  Construction Problems .................................. 50
   2.6  Solutions to the Exercises ............................. 54
   2.7  Problems ............................................... 56
3  Similarity .................................................. 59
   3.1  Similar Triangles ...................................... 59
   3.2  Parallel Lines and Similarity .......................... 60
   3.3  Other Conditions Implying Similarity ................... 64
   3.4  Examples ............................................... 67
   3.5  Construction Problems .................................. 75
   3.6  The Power of a Point ................................... 82
   3.7  Solutions to the Exercises ............................. 87
   3.8  Problems ............................................... 90
4  Theorems of Ceva and Menelaus ............................... 95
   4.1  Directed Distances, Directed Ratios .................... 95
   4.2  The Theorems ........................................... 97
   4.3  Applications of Ceva's Theorem ......................... 99
   4.4  Applications of Menelaus'Theorem ...................... 103
   4.5  Proofs of the Theorems ................................ 115
   4.6  Extended Versions of the Theorems ..................... 125
        4.6.1  Ceva's Theorem in the Extended Plane ........... 127
        4.6.2  Menelaus'Theorem in the Extended Plane ......... 129
   4.7  Problems .............................................. 131
5  Area ....................................................... 133
   5.1  Basic Properties ...................................... 133
        5.1.1  Areas of Polygons .............................. 134
        5.1.2  Finding the Area of Polygons ................... 138
        5.1.3  Areas of Other Shapes .......................... 139
   5.2  Applications of the Basic Properties .................. 140
   5.3  Other Formulae for the Area of a Triangle ............. 147
   5.4  Solutions to the Exercises ............................ 153
   5.5  Problems .............................................. 153
6  Miscellaneous Topics ....................................... 159
   6.1  The Three Problems of Antiquity ....................... 159
   6.2  -  Constructing Segments of Specific Lengths .......... 161
   6.3  Construction of Regular Polygons ...................... 166
        6.3.1  Con struction of the Regular Pentagon .......... 168
        6.3.2  Construction of Other Regular Polygons ......... 169
   6.4  Miquel's Theorem ...................................... 171
   6.5  Morley's Theorem ...................................... 178
   6.6  The Nine-Point Circle ................................. 185
        6.6.1  Special Cases .................................. 188
   6.7  The Steiner-Lehmus Theorem ............................ 193
   6.8  The Circle of Apollonius .............................. 197
   6.9  Solutions to the Exercises ............................ 200
   6.10 Problems .............................................. 201

PART II  TRANSFORMATIONAL GEOMETRY
7  The Euclidean Transformations or Isometries ................ 207
   7.1  Rotations, Reflections, and Translations .............. 207
   7.2  Mappings and Transformations .......................... 211
        7.2.1  Isometries ..................................... 213
   7.3  Using Rotations, Reflections, and Translations ........ 217
   7.4  Problems .............................................. 227
8  The Algebra of Isometries .................................. 235
   8.1  Basic Algebraic Properties ............................ 235
   8.2  Groups of Isometries .................................. 240
        8.2.1  Direct and Opposite Isometries ................. 241
   8.3  The Product of Reflections ............................ 245
   8.4  Problems .............................................. 250
9  The Product of Direct Isometries ........................... 255
   9.1  Angles ................................................ 255
   9.2  Fixed Points .......................................... 257
   9.3  The Product of Two Translations ....................... 258
   9.4  The Product of a Translation and a Rotation ........... 259
   9.5  The Product of Two Rotations .......................... 262
   9.6  Problems .............................................. 265
10 Symmetry and Groups ........................................ 271
   10.1 More About Groups ..................................... 271
   10.1.1 Cyclic and Dihedral Groups .......................... 275
   10.2 Leonardo's Theorem .................................... 279
   10.3 Problems .............................................. 283
11 Homotheties ................................................ 289
   11.1 The Pantograph ........................................ 289
   11.2 Some Basic Properties ................................. 290
   11.2.1 Circles ............................................. 293
   11.3 Construction Problems ................................. 295
   11.4 Using Homotheties in Proofs ........................... 300
   11.5 Dilatation ............................................ 304
   11.6 Problems .............................................. 306
12 Tessellations .............................................. 313
   12.1 Tilings ............................................... 313
   12.2 Monohedral Tilings .................................... 314
   12.3 Tiling with Regular Polygons .......................... 319
   12.4 Platonic and Archimedean Tilings ...................... 325
   12.5 Problems .............................................. 332

PART III  INVERSIVE AND PROJECTIVE GEOMETRIES
13 Introduction to Inversive Geometry ......................... 339
   13.1 Inversion in the Euclidean Plane ...................... 339
   13.2 The Effect of Inversion on Euclidean Properties ....... 345
   13.3 Orthogonal Circles .................................... 353
   13.4 Compass-Only Constructions ............................ 362
   13.5 Problems .............................................. 371
14 Reciprocation and the Extended Plane ....................... 375
   14.1 Harmonic Conjugates ................................... 375
   14.2 The Projective Plane and Reciprocation ................ 385
   14.3 Conjugate Points and Lines ............................ 396
   14.4 Conies ................................................ 402
   14.5 Problems .............................................. 409
15 Cross Ratios ............................................... 411
   15.1 Cross Ratios .......................................... 411
   15.2 Applications of Cross Ratios .......................... 422
   15.3 Problems .............................................. 431
16 Introduction to Projective Geometry ........................ 435
   16.1 Straightedge Constructions ............................ 435
   16.2 Perspectivities and Projectivities .................... 445
   16.3 Line Perspectivities and Line Projectivities .......... 450
   16.4 Projective Geometry and Fixed Points .................. 450
   16.5 Projecting a Line to Infinity ......................... 453
   16.6 The Apollonian Definition of a Conic .................. 457
   16.7 Problems .............................................. 463

Bibliography .................................................. 466
Index ......................................................... 471


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:27:00 2019. Размер: 12,662 bytes.
Посещение N 1468 c 28.10.2014