Trangenstein J.A. Numerical solution of elliptic and parabolic partial differentrial equations (Cambridge; New York, 2013). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаTrangenstein J.A. Numerical solution of elliptic and parabolic partial differentrial equations. - Cambridge; New York: Cambridge univ. press, 2013. - xix, 635 p.: ill. + 1 CD-ROM. - Bibliogr.: p.616-627. - Auth. ind.: p.628-630. – Sub. ind.: p.631-635. - Пер. загл.: Численное решение эллиптических и параболических дифференциальных уравнений с частными производными. - ISBN 978-0-521-87726-8
 

Место хранения: 02 | Отделение ГПНТБ СО РАН | Новосибирск

Оглавление / Contents
 
Preface	page ................................................. xv 
1  Introduction to Partial Differential Equations .............. 1
   1.1  Types of Second-Order PDEs ............................. 1
   1.2  Physical Problems ...................................... 2
   1.3  Summary ............................................... 10
2  Parabolic Equations ........................................ 13
   2.1  Theory of Linear Parabolic Equations .................. 13
   2.2  Finite Difference Methods in One Dimension ............ 21
   2.3  Lax Convergence Theorem ............................... 59
   2.4  Fourier Analysis ...................................... 60
   2.3  Diffusion Problems .................................... 63
   2.5  Lax Equivalence Theorem ............................... 70
   2.6  Measuring Accuracy and Efficiency ..................... 74
   2.7  Finite Difference Methods in Multiple Dimensions ...... 78
3  Iterative Linear Algebra ................................... 85
   3.1  Relative Efficiency of Implicit Computations .......... 85
   3.2  Vector Norms .......................................... 89
   3.3  Matrix Norms .......................................... 90
   3.4  Neumann Series ........................................ 94
   3.5  Perron-Frobenius Theorem .............................. 96
   3.6  M-Matrices ............................................ 98
   3.7  Iterative Improvement ................................ 103
   3.8  Gradient Methods ..................................... 123
   3.9  Minimum Residual Methods ............................. 142
   3.10 Nonlinear Systems .................................... 153
   3.11 Multigrid ............................................ 158
4  Introduction to Finite Element Methods .................... 179
   4.1  Weak Formulation ..................................... 179
   4.2  Applications ......................................... 183
   4.3  Galerkin Methods ..................................... 188
   4.4  Finite Element Example ............................... 190
   4.5  Overview of Finite Elements .......................... 200
   4.6  Reference Shapes ..................................... 202
   4.7  Polynomial Families .................................. 210
   4.8  Multi-Indices ........................................ 217
   4.9  Shape Function Families .............................. 219
   4.10 Quadrature Rules ..................................... 225
   4.11 Mesh Generation ...................................... 237
   4.12 Coordinate Mappings .................................. 238
   4.13 Finite Elements ...................................... 253
   4.14 Linear Systems ....................................... 253
5  Finite Element Theory ..................................... 263
   5.1  Norms and Derivatives ................................ 263
   5.2  Sobolev Spaces ....................................... 274
   5.3  Elliptic Equations ................................... 289
   5.4  Elliptic Regularity .................................. 300
   5.5  Galerkin Methods ..................................... 313
6  Finite Element Approximations ............................. 332
   6.1  Gaps in Our Theory ................................... 332
   6.2  Finite Element Assumptions ........................... 333
   6.3  Piecewise Polynomial Approximation ................... 336
   6.4  Conforming Spaces .................................... 342
   6.5  Useful Approximations ................................ 366
   6.6  Refinement ........................................... 386
   6.7  Inverse Estimates .................................... 388
   6.8  Condition Number Estimates ........................... 389
7  Mixed and Hybrid Finite Elements .......................... 398
   7.1  Hdiv and Hcurl ....................................... 399
   7.2  Physical Problems .................................... 401
   7.3  Saddle-Point Problems ................................ 416
   7.4  Mixed Finite Elements ................................ 431
   7.5  Iterative Methods .................................... 505
   7.6  Hybrid Mixed Finite Elements ......................... 514
8  Finite Elements for Parabolic Equations ................... 520
   8.1  Well-Posedness ....................................... 520
   8.2  Galerkin Methods ..................................... 528
   8.3  Convection-Diffusion Problems ........................ 541
   8.4  Reaction-Diffusion Problems .......................... 552
9  Finite Elements and Multigrid ............................. 554
   9.1  Assumptions .......................................... 554
   9.2  Prolongation and Restriction ......................... 555
   9.3  Coarse Grid Projection ............................... 562
   9.4  Parabolic Problems ................................... 562
   9.5  Mixed Methods ........................................ 563
10 Local Refinement .......................................... 564
   10.1 Locally Refined Tessellations ........................ 564
   10.2 Clement's Interpolation .............................. 567
   10.3 Bubble Functions ..................................... 570
   10.4 Residual Estimator ................................... 574
   10.5 Other Error Estimators ............................... 579
   10.6 Adaptive Mesh Refinement ............................. 580
   10.7 Mortar Methods ....................................... 581

Nomenclature ................................................. 610
References ................................................... 616
Author index ................................................. 628
Subject index ................................................ 631


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:26:40 2019. Размер: 9,829 bytes.
Посещение N 1544 c 05.08.2014